INTERNATIONAL EDITION

THE 80x86 IBM PC AND
CompATIBLE COMPUTERS
(VoLumes | & i)

ASSEMBLY LANGUAGE,

DESIGN, AND INTERFACING
4th Edition

Muhammad Ali Mazidi
Janice Gillispie Mazidi

To view the website that accompanies this text,
please go to http://www.prenhall.com/mazidi

THE 80x86 IBM PC AND CoMPATIBLE COMPUTERS
(VoLumes | &)
AsSEmMBLY LANGUAGE, DESIGN, AND INTERFACING

Muhammad Ali Mazidi
Janice Gillispie Mazidi

Praised by experts for its clarity and topical breadth, this visually appealing text provides
an easy-to-understand, systematic approach to teaching the fundamentals of 80x86
assembly language programming and PC architecture. It offers readers a fun, hands-on
learning experience and reinforces concepts with numerous examples and review
questions. It uses the Debug utility to show what action the instruction performs, and then
provides a sample program to show its application. The text delves into architecture,
supporting chips, buses, interfacing techniques, system programming, hard disk
characteristics, and more.

The fourth edition:

» Covers all the 80x86 microprocessors from the 8088 to the Pentium Pro.

* Combines assembly and C programming, and covers C programming in
the last section of each chapter.

* Introduces the 80x86 instructions with examples of how they are used.
* Ensures a basic understanding of binary and hex numbering systems.

* Discusses and analyzes hardware differences among 8086, 286, 386,
486, Pentium, and Pentium Pro chips.

¢ Discusses 8-bit, 16-bit, and 32-bit interfacing of 80x86 microprocessors.

» Shows a real-world approach to PC system programming by using
fragments of programs from the IBM PC technical reference.

» Provides an overview of the USB bus.

This is a special international edition of an established title

widely used by colleges and universities throughout the world.
Pearson Education International published this special edition for ISBN 0-13-121975-8
the benefit of students outside the United States and Canada.

If you purchased this book within the United States or Canada PeaI'SOH_
you should be aware that it has been wrongfully imported without Education

the approval of the Publisher or the Author. EE e

| “ “‘ Il
0131

219755

9ll78

Pearson International Edition

Not for Sale in the U.S.A. or Canada

THE 80x86 IBM PC
AND COMPATIBLE COMPUTERS

VOLUMESI & 11

Assembly Language, Design, and Interfacing

Fourth Edition

THE 80x86 IBM PC
AND COMPATIBLE COMPUTERS

VOLUMESI & 11

Assembly Language, Design, and Interfacing

Fourth Edition

Muhammad Ali Mazidi
Janice Gillispie Mazidi

PEARSON

e ——

Prentice
Hall

Pearson Education International

If you purchased this book within the United States or Canada you should be aware that it has been
wrongfully imported without the approval of the Publisher or the Author.

Editor in Chief: Stephen Helba

Assistant Vice President and Publisher: Charles E. Stewart, Jr,
Production Editor: Alexandrina Benedicto Wolf

Design Coordinator: Diane Emsberger

Cover Designer: Jeff Vanik

Cover image: Digital Images

Production Manager: Matthew Ottenweller

Marketing Manager: Ben Leonard

This book was set in Times Roman by Janice Mazidi. It was printed and bound by Courier/Kendallville.
The cover was printed by Phoenix Color Corp.

Pearson Education LTD.

Pearson Education Australia PTY, Limited

Pearson Education Singapore, Pte. Ltd

Pearson Education North Asia Lid

Pearson Education Canada, Ltd.

Pearson Educacidn de Mexico, S.A. de C.V.
Pearson Education -- Japan

Pearson Education Malaysia, Pte. Ltd

Pearson Education, Upper Saddle River, New Jersey

Earlier edition © 1995 by Muhammad Ali Mazidi and Janice Gillispie Mazidi

Copyright © 2003, 2000, 1998 by Pearson Education, Inc., Upper Saddle River, New Jersey 07458.
All rights reserved. Printed in the United States of America. This publication is protected by Copyright
and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permission(s), write to: Rights and Permissions
Department.

PEARSON
e .

Prentice
Hall 1098765432

ISBN 0-13-121975-8

Regard man as a mine

rich in gems of inestimable value.
Education can, alone,

cause it to reveal its treasures,
and enable mankind

to benefit therefrom.

Baha'u'llah

DEDICATIONS

This book is dedicated to the memory of Muhammad Ali's parents, who
raised 10 children and persevered through more than 50 years of hardship
together with dignity and faith.

We feel especially blessed to have the support, love, and encouragement
of Janice's parents whose kindness, wisdom, and sense of humor have
been the bond that has welded us into a family.

In addition, we must also mention our two most important collaborations: our
sons Robert Nabil and Michael Jamal who have taught us the meaning

of love and patience.

We would also like to honor the memory of a dear friend, Kamran Lotfi.

CONTENTS AT A GLANCE

Assembly Language Programming on the IBM PC, PS, and Compatibles

INTRODUCTION TO COMPUTING, 1

THE 80x86 MICROPROCESSOR, 18

ASSEMBLY LANGUAGE PROGRAMMING, 49

ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS, 82
BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C, 121
MACROS AND THE MOUSE, 150

SIGNED NUMBERS, STRINGS, AND TABLES, 173

MODULES: MODULAR AND C PROGRAMMING, 193

32-BIT PROGRAMMING FOR 386 AND 486 MACHINES, 220

o~ W 2O

Design and Interfacing of the IBM PC, PS, and Compatibles

9 8088, 80286 MICROPROCESSOR AND ISA BUS, 235

10 MEMORY AND MEMORY INTERFACING, 265

11 /O AND THE 8255; ISA BUS INTERFACING, 309

12 INTERFACING TO THE PC: LCD, MOTOR, ADC, AND SENSOR, 351
13 8253/54 TIMER AND MUSIC, 386

14 INTERRUPTS AND THE 8259 CHIP, 410

15 DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP, 447

16 VIDEO AND VIDEO ADAPTERS, 477

17 SERIAL DATA COMMUNICATION AND THE 16450/8250/51 CHIPS, 508
18 KEYBOARD AND PRINTER INTERFACING, 541

19 FLOPPY DISKS, HARD DISKS, AND FILES, 570

20 THE 80x87 MATH COPROCESSOR, 600

21 386 MICROPROCESSOR: REAL VERSUS PROTECTED MODE, 631
22 HIGH-SPEED MEMORY INTERFACING AND CACHE, 659

23 486, PENTIUM, PENTIUM PRO AND MMX, 690

24 MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS, 724

25 MS DOS MEMORY MANAGEMENT, 740

26 IC TECHNOLOGY AND SYSTEM DESIGN, 759

27 ISA, PCI, AND USB BUSES, 784

28 PROGRAMMING DOS, BIOS, & HARDWARE WITH C/C++, 808

APPENDICES

DEBUG PROGRAMMING, 825

80x86 INSTRUCTIONS AND TIMING, 847
ASSEMBLER DIRECTIVES AND NAMING RULES, 883
DOS INTERRUPT 21H AND 33H LISTING, 898

BIOS INTERRUPTS, 924

ASCII CODES, 940

I/O ADDRESS MAPS, 941

IBM PC/PS BIOS DATA AREA, 952

DATA SHEETS, 9359

T IGTMMOO W

vii

CONTENTS

PREFACE TO VOLUMES I AND II

CHAPTER 0: INTRODUCTION TO COMPUTING 1

SECTION 0.1: NUMBERING AND CODING SYSTEMS
Decimal and binary number systems 2
Converting from decimal to binary 2
Converting from binary to decimal 2
Hexadecimal system 3
Converting between binary and hex 4
Converting from decimal to hex 4
Converting from hex to decimal 4
Counting in base 10, 2, and 16 6
Addition of binary and hex numbers 6

2's complement 6

Addition and subtraction of hex numbers 7
Addition of hex numbers 7

Subtraction of hex numbers 7

ASCH code 8

SECTION 0.2: INSIDE THE COMPUTER 9
Some important terminology 9
Internal organization of computers 9
More about the data bus 10
More about the address bus 10
CPU and its relation to RAM and ROM 11
Inside CPUs 11
Internal working of computers 12

SECTION 0.3: BRIEF HISTORY OF THE CPU 13
CISC vs. RISC 14

CHAPTER 1: THE 80x86 MICROPROCESSOR 18

SECTION 1.1: BRIEF HISTORY OF THE 80x86 FAMILY
Evolution from 8080/8085 to 8036 19
Evolution from 8086 to 8088 19
Success of the 8088 19
Other microprocessors: the 80286, 80386, and 80486

SECTION 1.2: INSIDE THE 8088/8086 21
Pipelining 21
Registers 22

SECTION 13: INTRODUCTION TO ASSEMBLY PROGRAMMING
Assembly language programming 24
MOV instruction 24
ADD instruction 25

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS 26

Origin and definition of the segment 27
Logical address and physical address 27
Code segment 27

Logical address vs. physical address in the code segment 28
Data segment 29

Logical address and physical address in the data segment
Little endian convention 31

Extra segment (ES) 32

Memory map of the IBM PC 32

More about RAM 32

Video RAM 33

More about ROM 33

Function of BIOS ROM 33

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86 33
What is a stack, and why is it needed? 33
How stacks are accessed 34
Pushing onto the stack 34
Popping the stack 34
Logical address vs. physical address for the stack 35
A few more words about segments in the 80x86 36
Overlapping 36
Flag register 37
Bits of the flag register 38
Flag register and ADD instruction 38
Use of the zero flag for looping 40

SECTION 1.6: 80x86 ADDRESSING MODES 41
Register addressing mode 41
Immediate addressing mode 41
Direct addressing mode 42
Register indirect addressing mode 42
Based relative addressing mode 43
Indexed relative addressing mode 43
Based indexed addressing mode 44
Segment overrides 44

30

CHAPTER 2: ASSEMBLY LANGUAGE PROGRAMMING 49

SECTION 2.1: DIRECTIVES AND A SAMPLE PROGRAM

Segments of a program 50
Stack segment definition 51
Data segment definition 51

Code segment definition 52

SECTION 2.2: ASSEMBLE, LINK, AND RUN A PROGRAM
.asm and .obj files 55
st file 55
PAGE and TITLE directives 56
corf file 56
LLINKing the program 57
.map file 57

SECTION 2.3: MORE SAMPLE PROGRAMS 57
Analysis of Program 2-1 58
Various approaches to Program 2-1 60
Analysis of Program 2-2 62
Analysis of Program 2-3 62
Stack segment definition revisited 62

SECTION 2.4: CONTROL TRANSFER INSTRUCTIONS
FAR and NEAR 64
Conditional jumps 64
Short jumps 64
Unconditional jumps 66
CALL statements 66
Assembly language subroutines 67
Rules for names in Assembly language 67

SECTION 2.5: DATA TYPES AND DATA DEFINITION
80x86 data types 69
Assembler data directives 69
ORG (origin) 69
DB (define byte) 69
DUP (duplicate) 70
DW (define word) 70
EQU (equate) 71
DD (define doubleword) 71
D@ (define quadword) 72
DT (define ten bytes) 72

SECTION 2.6: SIMPLIFIED SEGMENT DEFINITION 73
Memory model 74
Segment definition 74

50

54

xi

SECTION 2.7: EXE VS. COM FILES 76
Why COM files? 76
Converting from EXE to COM 77

SECTION 3.1: UNSIGNED ADDITION AND SUBTRACTION
Addition of unsigned numbers 83
CASE I: Addition of individual byte and word data
Analysis of Program 3-1a 84
CASE 2: Addition of multiword numbers 85
Analysis of Program 3-2 86
Subtraction of unsigned numbers 87
SBB (subtract with borrow) 88

CHAPTER 3: ARITHMETIC AND LOGIC INSTRUCTIONS AND PROGRAMS

83

SECTION 3.2: UNSIGNED MULTIPLICATION AND DIVISION

Multiplication of unsigned numbers 88
Division of unsigned numbers 90

SECTION 3.3: LOGIC INSTRUCTIONS AND SAMPLE PROGRAMS

AND 93
OR 93
XOR 94
SHIFT 95

COMPARE of unsigned numbers 96

82

83

93

IBM BIOS method of converting from lowercase to uppercase 99

BIOS examples of logic instructions 100

SECTION 3.4 BCD AND ASCII OPERANDS AND INSTRUCTIONS 101

BCD number system 101

Unpacked BCD 102

Packed BCD 102

ASCII numbers 102

ASCII to BCD conversion 102

ASCII to unpacked BCD conversion 102
ASCH to packed BCD conversion 103
Packed BCD to ASCII conversion 104
BCD addition and subtraction 104

BCD addition and correction 104
DAA 105

Summary of DAA action 105

BCD subtraction and correction 105

Summary of DAS action 107

ASCI1! addition and subtraction 169

Unpacked BCD multiplication and division 110
AAM 110

AAD 110

xii

SECTION 3.5: ROTATE INSTRUCTIONS 111
Rotating the bits of an operand right and left 11
ROR rotate right 111
ROL rotate left 112
RCR rotate right through carry 113
RCL rotate left through carry 113

SECTION 3.6: BITWISE OPERATION IN THE C LANGUAGE 114
Bitwise operators in C 114
Bitwise shift operators in C 115
Packed BCD-to-ASCII conversionin C 116
Testing bits in C 116

CHAPTER 4: BIOS AND DOS PROGRAMMING IN ASSEMBLY AND C 12}

SECTION 4.1: BIOS INT {0H PROGRAMMING 122
Monitor screen in text mode 122
Clearing the screen using INT 10H function 06H 123
INT 10H function 02: setting the cursor to a specific location 123
INT 10H function 03: get current cursor position 124

Changing the video mode 124

Attribute byte in monochrome monitors 125

Attribute byte in CGA text mode 125

Graphics: pixel resolution and color 127

INT 10H and pixel programming 128

Drawing horizontal or vertical lines in graphics mode 128

Changing the background color 129

SECTION 4.2: DOS INTERRUPT 21H 130
INT 21H option 09: outputting a string to the monitor 130
INT 21H option 02: outputting a character to the monitor 130
INT 21H option 01: inputting a character, with echo 130
INT 21H option 0AH: inputting a string from the keyboard 131

Inputting more than the buffer size 132

Use of carriage return and line feed 134

INT 21H option 07: keyboard input without echo 135
Using the LABEL directive to define a string buffer 136

SECTION 4.3: INT 16H KEYBOARD PROGRAMMING 139
Checking a key press 139
Which key is pressed? 139

SECTION 4.4: INTERRUPT PROGRAMMING WITHC 141

Programming BIOS interrupts with C/C++ 141
Programming INT 21H DOS functions calls with C/C++ 143
Accessing segment registers 144

Accessing the carry flag in int86 and intdos functions 144

Mixing C with Assembly and checking ZF 145
C function kbhit vs. INT 16H keyboard input 146

xiii

CHAPTER 6: SIGNED NUMBERS, STRINGS, AND TABLES

CHAPTER 5: MACROS AND THE MOUSE 150

SECTION 5.1: WHAT IS A MACRO AND HOW IS IT USED?
MACRO definition 151

Comments in a macro 152
Analysis of Program 5-1 154
LOCAL directive and its use in macros 155

INCLUDE directive 158

SECTION 5.2: MOUSE PROGRAMMING WITH INT 33H 161
INT 33H 161
Detecting the presence of a mouse 161
Some mouse terminology 162
Displaying and hiding the mouse cursor 162

Video resolution vs. mouse resolution in text mode 163

Video resolution vs. mouse resolution in graphics mode

Getting the current mouse cursor position (AX=03) 163

Setting the mouse pointer position (AX=04) 166

Getting mouse button press information (AX=05) 166

151

163

Monitoring and displaying the button press count program 167

Getting mouse button release information (AX=06) 168

Setting horizontal boundary for mouse pointer (AX=07)
Setting vertical boundary for mouse pointer (AX=08)

168
168

Setting an exclusion area for the mouse pointer (AX=10) 169
Getting mouse driver information (version) (AX=24H) 169

SECTION 6.1: SIGNED NUMBER ARITHMETIC OPERATIONS

Concept of signed numbers in computers 174
Signed byte operands 174

Positive numbers 174

Negative numbers 174

Word-sized signed numbers 175

Overflow problem in signed number operations 176
When the overflow flag is set in 8-bit operations 176
Overflow flag in 16-bit operations 177

Avoiding erroneous results in signed number operations
IDIV (Signed number division) 179

IMUL (Signed number multiplication) 180
Arithmetic shift 182

SAR (shift arithmetic right) 182
SAL (shift arithmetic left) and SHL (shift left) 182
Signed number comparison 182

173

174

178

Xiv

SECTION 6.2: STRING AND TABLE OPERATIONS

184

Use of SI and DI, DS and ES in string instructions

Byte and word operands in string instructions
DF, the direction flag 185

REP prefix 186

STOS and LODS instructions 186
Testing memory using STOSB and LODSB
The REPZ and REPNZ prefixes 187
SCAS (scan string) 189

Replacing the scanned character 189
XLAT instruction and look-up tables 190
Code conversion using XLAT 190

SECTION 7.1: WRITING AND LINKING MODULES
Why modules? 194
Writing modules 194
EXTRN directive 194
PUBLIC directive 194
END directive in modules 195

185

185

187

CHAPTER 7: MODULES; MODULAR AND C PROGRAMMING

Linking modules together into one executable unit

SEGMENT directive 198

Complete stack segment definition 198
Complete data and code segment definitions
Analysis of Program 7-2 link map 200

Modular programming and the new segment definition

SECTION 7.2: SOME VERY USEFUL MODULES
Binary (hex)-to-ASCII conversion 203
ASCII (decimal)-to-binary (hex) conversion
Binary-to-ASCII module 205
ASCII-to-binary module 207
Calling moduile 207

193

194

196

198

203

204

SECTION 7.3: PASSING PARAMETERS AMONG MODULES

Passing parameters via registers 208
Passing parameters via memory 208
Passing parameters via the stack 208

201

208

SECTION 7.4: COMBINING ASSEMBLY LANGUAGE AND C 210

Why C? 210

Inserting 80x86 assembly code into C programs
C programs that call Assembly procedures

C calling convention 213

How parameters are returned to C 214
New assemblers and linking with C 215
Passing array addresses from C to the stack
Linking assembly language routines with C

212

216
217

211

XV

CHAPTER 8: 32-BIT PROGRAMMING FOR 386 AND 486 MACHINES 220

SECTION 8.1: 80386/80486 MACHINES IN REAL MODE 221
General registers are pointers in 386/486 222

386/486 maximum memory range in real mode: 1M 224
Accessing 32-bit registers with commonly used assemblers 224
Little endian revisited 226

SECTION 8.2: SOME SIMPLE 386/486 PROGRAMS 226
Adding 16-bit words using 32-bit registers 226
Adding multiword data in 386/486 machines 228
Multiplying a 32-bit operand by a 16-bit operand 229
32-bit by 16-bit multiplication using 8086/286 registers 229

SECTION 8.3: 80x86 PERFORMANCE COMPARISON 231
Running an 8086 program across the 80x86 family 231

CHAPTER 9: 8088, 80286 MICROPROCESSORS AND ISA BUS 235

SECTION 9.1: 8088 MICROPROCESSCR 236
Microprocessor buses 236
Data bus in 8088 236
Address bus in 8088 238

8088 control bus 238
Bus timing of 8088 239
Other 8088 pins 240
SECTION 9.2: 8284 AND 8288 SUPPORTING CHIPS 242

8288 bus controller 242
Input signals 242

Output signals 243

8284 clock generator 244
Input pins 244

Output signals 245

SECTION 9.3: 8-BIT SECTION OF ISA BUS 248
A bit of bus history 246

Local bus vs. system bus 247
Address bus 247
Data bus 248

Control bus 249

One bus, two masters 249

AEN signal generation 249
Control of the bus by DMA 250
Bus boosting 250

8-bit section of the ISA bus 250

xvi

SECTION 9.4: 80286 MICROPROCESSOR 251
Pin descriptions 252

SECTION 9.5: 16-BIT ISA BUS 255
Exploring ISA bus signals 255
Address bus 256
Data bus 256
Memory and 1O control signals 256
Other control signals 258
ODD and EVEN bytes and BHE 259
A20 gate and the case of high memory area (HMA) 260

CHAPTER 10: MEMORY AND MEMORY INTERFACING 265

SECTION 10.1: SEMICONDUCTOR MEMORY FUNDAMENTALS 266
Memory capacity 266
Memory organization 266
Speed 267
ROM (read-only memory) 267
PROM (programmable ROM) or OTP ROM 268
EPROM (erasable programmable ROM) 268
EEPROM (electrically erasable programmable ROM) 269
Flash memory 270
Mask ROM 271
RAM (random access memory) 271
SRAM (static RAM) 271
DRAM (dynamic RAM) 273
Packaging issue in DRAM 273
DRAM, SRAM and ROM organizations 275
NV-RAM {(nonvolatile RAM) 276

SECTION 10.2: MEMORY ADDRESS DECODING 276
Simple logic gate as address decoder 278
Using the 741.8138 as decoder 279

SECTION 10.3: IBM PC MEMORY MAP 280
Conventional memory: 640K of RAM 281
BIOS data area 282
Video display RAM (VDR) map 282
ROM address and cold boot on the PC 283

SECTION 10.4: DATA INTEGRITY IN RAM AND ROM 284
Checksum byte 284
Checksum program 286
Use of parity bit in DRAM error detection 286
DRAM memory banks 286
Parity bit generator/checker in the IBM PC 288
745280 parity bit generator and checker 288

xvii

SECTION 10.5: 16-BIT MEMORY INTERFACING 289
ODD and EVEN banks 289
Memory cycle time and inserting wait states 291
Accessing EVEN and ODD words 292
Bus bandwidth 293

SECTION 10.6: ISA BUS MEMORY INTERFACING 295
Address bus signals 295
Memory control signals 295
ISA bus timing for memory 299
8-bit memory timing for ISA bus 299
ROM duplicate and x86 PC memory map 301
Shadow RAM 302
DIMM and SIMM memory modules 302

CHAPTER 11: I/O AND THE 8255; ISA BUS INTERFACING 309

SECTION 11.1: 8088 INPUT/OQUTPUT INSTRUCTIONS 310
8-bit data ports 310
How to use I/O instructions 311

SECTION 10.2: I/O ADDRESS DECODING AND DESIGN 312
Using the 74L.S373 in an output port design 312
IN port design using the 7415244 312
Memory map /O 314

SECTION 11.3: /O ADDRESS MAP OF X86 PCS 316
Absolute vs. linear select address decoding 316
Prototype addresses 300 - 31FH in the x86 PC 316
Use of simple logic gates as address decoders 316
Use of 74L.S138 as decoder 318
IBM PC /O address decoder 318
Use of the 8255 in the IBM PC/XT 341
Port 61H and time delay generation 319

SECTION 1i.4: 8255 PPI CHIP 320
Mode selection of the 8255A 321

SECTION 11.5: PC INTERFACE TRAINER AND BUS EXTENDER 325
PC I/O Bus Extender 325
Buffering 300 - 31F address range 326
Installing the PC Bus Extender and booting the PC 327
Failure to boot 327
PC Interface Trainer 327
Design of the PC Trainer 328
The role of HI and H2 328
Connecting the Module Trainer to the PC and testing 328
Testing the 8255 port 329
Testing Port A 330

xviii

SECTION 11.6: VO PROGRAMMING WITH C/C++ AND VB 332

Visual C/C++ /O programming 332
Visual C++ output example 332
Visual C++ input example 332

/O programming in Turbo C/C++ 334
1/0 programming in Linux C/C++ 335
Linux C/C++ program with 1/O functions 335

SECTION 11.7: 8-BIT AND 16-BIT I/O TIMING IN ISA BUS 338

8-bit and 16-bit IO in ISA bus 338

/0 signals of the ISA bus 339

8-bit timing and operation in ISA bus 341

16-bit I/O operation and timing in ISA bus 342
16-bit data ports instruction 342

16-bit 1/O timing and operation via ISA bus 342
1/0 bus bandwidth for ISA 343

Interfacing 8-bit peripherals to a 16-bit data bus 344

CHAPTER 12: INTERFACING TO THE PC: LCD, MOTOR, ADC, AND

SENSOR

351

SECTION 12.1: INTERFACING AN LCD TO THE PC 352

LCD operation 352

LCD pin descriptions 352

Sending commands to LCDs 353

Sending data to the LCD 355

Checking LCD busy flag 356

LCD cursor position 357

LCD programming in Visual C/C+ 358
LCD timing and data sheet 358

SECTION 12.2: INTERFACING A STEPPER MOTOR TO A PC 362

Stepper motors 362

Step angle 363

Stepper motor connection and programming 364

Steps per second and RPM relation 365

The four-step sequence and number of teeth on rotor 365
Motor speed 366

Holding torque 366

Wave drive 4-step sequence 367

SECTION 12.3: INTERFACING DACTO APC 368

Digital-to-analog (DAC) converter 368

MC1408 DAC (or DAC 808) 369

Converting IOUT to voltage in 1408 DAC 369
Generating a sine wave 369

Xix

SECTION 12.4: INTERFACING ADC AND SENSORS TO THE PC 373
ADC devices 373
ADC 804 chip 373
Selecting an input channel 376
ADC(0848 connection to 8255 377
interfacing a temperature sensor to a PC 378
[LM34 and LM35 temperature sensors 378
Signal conditioning and interfacing the LM35to a PC 379

CHAPTER 13: 8253/54 TIMER AND MUSIC 386

SECTION 13.1: 8253/54 TIMER DESCRIPTION AND INITIALIZATION 387
Initialization of the §253/54 388
Control word 388

SECTION 13.2: IBM PC 8253/54 TIMER CONNECTIONS AND
PROGRAMMING 391

Using counter 0 392

Using counter | 393

Using counter 2 393

Use of timer 2 by the speaker 394

Turning on the speaker via PB0 and PB1 of port 61H 394

Time delay for 80x86 PCs 394

Creating time delays in 8088/86-based computers 395

Time delays in 80x86 IBM PC for 286 and higher processors 395

SECTION 13.3: GENERATING MUSIC ON THE IBM PC 397
Playing "Happy Birthday" on the PC 399

SECTION 13.4: SHAPE of 8253/54 OUTPUTS 401
OUTO pulse shape in IBM BIOS 401
OUT1 pulse shape in IBM BIOS 402
OUT?2 pulse shape in IBM BIOS 402
8253/54 modes of operation 402
Testing the 8255/54 timer of the PC Interface Trainer 407

CHAPTER 14: INTERRUPTS AND THE 8259 CHIP 410

SECTION 14.1: 8088/86 INTERRUPTS 411
Interrupt service routine (ISR} 411
Difference between INT and CALL instructions 412
Categories of interrupts 413
Hardware interrupts 413
Software interrupts 413
Interrupts and the flag register 414
Processing interrupts 414
Functions associated with INT 00 to INT 04 415

SECTION 14.2: IBM PC AND DOS ASSIGNMENT OF INTERRUPTS 417
Examining the interrupt vector table of your PC 417
Analyzing an IBM BIOS interrupt service routine 419
INT i2H: checking the size of RAM on the IBM PC 419

SECTION i43: 8259 PROGRAMMABLE INTERRUPT CONTROILLER 420
8259 control words and ports 421
Masking and prioritization of IR0 - IR7 interrupts 426
OCW (operation command word) 426
OCW!1 (operation command word 1) 427
OCW?2 (operation command word 2) 427
Importance of the EOI (end of interrupt) command 429
OCW3 (operation command word 3) 429

SECTION 14.4: USE OF THE 8259 CHIP IN THE IBM PC/XT 430
Interfacing the 8259 to the 8088 in IBM PC/XT computers 430
Initialization words of the 8259 in the IBM PC/XT 431
Sequences of hardware interrupts with the 8259 432
Sources of hardware interrupts in the IBM PC/XT 433
Sources of NMI in the IBM PC 433

SECTION 14.5: INTERRUPTS ON 80286 AND HIGHER 80x86 PCs 436
IBM PC AT hardware interrupts 436
8259 in master mode 436
8259 in slave mode 437
AT-type computers interrupt assignment 438
Case of missing IRQs on the AT expansion slot 438
80x86 microprocessor generated interrupts (exceptions) 439
Interrupt priority 441
More about edge- and level-triggered interrupts 441
Interrupt sharing in the x86 PC 442

CHAPTER 15: DIRECT MEMORY ACCESSING; THE 8237 DMA CHIP 447
SECTION 15.1: CONCEPT OF DMA 448

SECTION 15.2: 8237 DMA CHIP PROGRAMMING 450
8237's internal control registers 453
Command register 453
Status register 454
Mode register 456
Single mask register 457
All mask register 457
Master clear/temporary register 458
Clear mask register 459

SECTION 15.3: 8237 DMA INTERFACING IN THE IBM PC/XT 459
8237 and 8088 connecticns in the IBM PC 459
Channel assignment of the 8237 in the IBM PC/XT 463
DMA page register 463
DMA data transfer rate of the PC/XT 464

xxi

SECTION 15.4: REFRESHING DRAM USING CHANNEL 0 OF
THE 8237 465

Refreshing DRAM with the 8237 467

Refreshing in the IBM PC/XT 467

DMA cycle of channel ¢ 467

SECTION 15.5: DMA IN 80x86-BASED PC AT-TYPE COMPUTERS 468
8237 DMA #1 468
8237 DMA #2 469
Points to be noted regarding 16-bit DMA channels 470
DMA channel priority 471
/O cycle recovery time 471
DMA transfer rate 472

CHAPTER 16: VIDEO AND VIDEO ADAPTERS 477

SECTION 16.1: PRINCIPLES OF MONITORS AND VIDEO
ADAPTERS 478

How to judge a monitor 478

Dot pitch 480

Dot pitch and monitor size 480

Phosphorous materials 480

Color monitors 481

Analog and digital monitors 481

Video display RAM and video controller 481

Character box 482

SECTION 16.2: VIDEO ADAPTERS AND TEXT MODE
PROGRAMMING 484

CGA (color graphics adapter) 484

Video RAM in CGA 484

Attribute byte in CGA text mode 485

MDA (monochrome display adapter) 486

Video RAM in MDA 486

Attribute byte in IBM MDA 487

EGA (enhanced graphics adapter) 487

EGA video memory and attribute 487

MCGA (multicolor graphics array) 488

VGA (video graphics array) 439

Video memory and attributes in VGA 489

Super VGA (SVGA) and other video adapters 491

SECTION 16.3: TEXT MODE PROGRAMMING USING INT 10H 491
Finding the current video mode 491
Changing the video mode 491
Setting the cursor position (AH=02) 493
Getting the current cursor position (AH=03} 493
Scrolling the window up to clear the screen (AH=06) 493

xxii

Writing a character in teletype mode (AH=0E) 494
Writing a string in teletype mode (AH=13H) 495
Character generator ROM 495

How characters are displayed in text mode 497
Character definition table in VGA 498

Changing the cursor shape using INT 10H 498

SECTION 16.4: GRAPHICS AND GRAPHICS PROGRAMMING 501
Graphics: pixel resolution, color, and video memory 501
The case of CGA 501
The case of EGA 502
Video memory size and color relation for EGA 502
The case of VGA 502
Video memory size and color relation for VGA 503
The case of SVGA graphics 503
INT 10H and pixel programming 504
Drawing horizontal or vertical lines in graphics mode 504

CHAPTER 17: SERIAL DATA COMMUNICATION AND THE
16450/8250/51 CHIPS 508

SECTION 17.1: BASICS OF SERIAL COMMUNICATION 509
Half- and full-duplex transmission 510
Asynchronous serial communication and data framing 511
Start and stop bits 511
Data transfer rate 512
RS232 and other serial I/O standards 513
RS232 pins 513
Other serial 1/O interface standards 514
Data communication classification 514
Examining the RS232 handshaking signals 514

SECTION 17.2: ACCESSING IBM PC COM PORTS USING DOS
AND BIOS 516

IBM PC COM ports 516

Using the DOS MODE command 517

Data COM programming using BIOS INT 14H 520

SECTION 17.3: INTERFACING THE NS8250/16450 UART IN
THE IBM PC 522

8250 pin descriptions 522

The 8250 registers 524

Limitation of the 8250/16450 UART and 16550 530

SECTION 17.4: INTEL 8251 USART AND SYNCHRONOUS
COMMUNICATION 531

Intel's 8251 USART chip 531

Synchronous serial data communication 531

SDLC (serial data link control) 535

Cyclic redundancy checks 535

xxiii

CHAPTER 18: KEYBOARD AND PRINTER INTERFACING 541

SECTION 18.1: INTERFACING THE KEYBOARD TO THE CPU 542
Scanning and identifying the key 542
Grounding rows and reading the columns 543

SECTION 18.2: PC KEYBOARD INTERFACING AND
PROGRAMMING 546
Make and break 546
IBM PC scan codes 546
BIOS INT 16H keyboard programming 549
Hardware INT 09 role in the IBM PC keyboard 551
Keyboard overrun 552
Keyboard buffer in BIOS data area 552
BIOS keyboard buffer 553
Tail pointer 553
Head pointer 553
PC keyboard technology 553

SECTION 18.3: PRINTER AND PRINTER INTERFACING IN
THE IBM PC 554

Centronics printer interface pins 554

Data lines and grounds 556

Printer status signals 556

Printer control signals 556

IBM PC printer interfacing 557

Programming the IBM PC printer with BIOS INT 17H 559

What is printer time-out? 560

ASCII control characters 560

Inner working of BIOS INT 17H for printing a character 561

SECTION 18.4: BIDIRECTIONAL DATA BUS IN PARALLEL

PORTS 562
SPP 562
PS/2 562
How to detect a PS/2-type bidirectional data bus 563
EPP 563
ECP 563

Using an LPT port for output 564

LCD connection to the parallel port 564

Stepper motor connection to the parallel port 564
Data input buffering 566

BIOS data area and LPT 1/O address 566

CHAPTER 19: FLOPPY DISKS, HARD DISKS, AND FILES 570

SECTION 19.1: FLOPPY DISK ORGANIZATION 571
Capacity of the floppy disk 572
Formatting disks 572
Disk organization 572

Xxiv

Looking into the boot record 573

Directory 577

Bootable and nonbootable disks 579

FAT (file allocation table) 580

How to calculate sector locations of the FAT and the directory 582

SECTION 19.2: HARD DISKS 583
Hard disk capacity and organization 583
Partitioning 585
Hard disk layout 585
Hard disk boot record 585
Hard disk FAT 585
Clusters 585
Hard disk directory 585
Speed of the hard disk 585
Data encoding techniques in the hard disk 586
Interfacing standards in the hard disk 588
Interleaving 591
Low- and high-level formatting 592
Parking the head 592
Disk caching 592
Disk reliability 592

SECTION 19.3: DISK FILE PROGRAMMING 593
File handle and error code 593

CHAPTER 20: THE 80x87 MATH COPROCESSOR 600

SECTION 20.1: MATH COPROCESSOR AND IEEE FLOATING-
POINT STANDARDS 601

IEEE floating point standard 601

IEEE single-precision floating-point numbers 602

IEEE double-precision floating-point numbers 602

Other data formats of the 8087 604

SECTION 20.2: 80x87 INSTRUCTIONS AND PROGRAMMING 605
Assembling and running 80x87 programs on the IBM PC 605
Verifying the Solution for Examples 20-1 to 20-4 605
80x87 registers 607
Trig functions 612
Integer numbers 614

SECTION 20.3: 8087 HARDWARE CONNECTIONS IN THE iBM
PC/XT 616

8087 and 8088 connection in the IBM PC/XT 616

How the 8088 and 8087 work together in the IBM PC/XT 618

XXv

SECTION 20.4: 80x87 INSTRUCTIONS AND TIMING 620
Real transfers 620
Integer transfers 621
Packed decimal transfers 621
Addition 621
Subtraction 621
Reversed subtraction 622
Multiplication 622
Division 622
Reversed division 622
Other arithmetic instructions 622
Compare instructions 623
Transcendental instructions 623
Constant instructions 624
Processor control instructions 625

CHAPTER 21: 386 MICROPROCESSOR: REAL vs. PROTECTED MODE 631

SECTION 21.1: 80386 IN REAL MODE 632
What happened to the 80186/1887 632
80186/88 instructions 632
80286 Microprocessor 634
Major changes in the 80386 634
80386 Real mode programming 635
32-bit registers 635
Which end goes first? 636
General registers as pointers 636
Scaled index addressing mode 637
Some new 386 instructions 639
MOVSX and MOVZX instructions 639
Bit scan instructions 640

SECTION 21.2: 80386: A HARDWARE VIEW 641
Overview of pin functions of the 80386 642
Bus bandwidth in the 386 645
Data misalignment in the 336 646
1/0 address space in the 386 646

SECTION 21.3: 80386 PROTECTED MODE 647
Protection mechanism in the 386 647
Virtual memory 647
Segmentation and descriptor table 648
Local and global descriptor tables 651
64 Terabtyes of virtual memory 651
Paging 652
Going from a linear address to a physical address 653
The bigger the TLB, the better 654
Virtual 8086 mode 654

xxvi

CHAPTER 22: HIGH-SPEED MEMORY INTERFACING AND CACHE 659

SECTION 22.1: MEMORY CYCLE TIME OF THE 80X86 660
Introducing wait states into the memory cycle 660

SECTION 22.2: PAGE, STATIC COLUMN, AND NIBBLE MODE
DRAMS 662
Memory access time vs. memory cycle time 662
Types of DRAM 662
DRAM (standard mode) 663
DRAM interfacing using the interleaving method 663
Interleaved drawback 665
Page mode DRAM 667
Static column mode 669
Nibble mode 669
Timing comparison of DRAM modes 671

SECTION 22.3: CACHE MEMORY 672
Cache organization 673
Fully associative cache 673
Direct-mapped cache 674
Set associative 676
Updating main memory 678
Write-through 678
Write-back (copy-back) 678
Cache coherency 679
Cache replacement policy 679
Cache fill block size 679

SECTION 22.4: EDO, SDRAM, AND RAMBUS MEMORIES 630
EDO DRAM: origin and operation 680
SDRAM (synchronous DRAM) 682
Synchronous DRAM and burst mode 682
SDRAM and interleaving 683
Rambus DRAM 683
Overview of Rambus technology 683
Rambus protocol for block transfer 684

CHAPTER 23: 486, PENTIUM, PENTIUM PRO AND MMX 690

SECTION 23.1: THE 80486 MICROPROCESSOR 691
Enhancements of the 486 691
CLX in the 80486 694
High memory area (HMA) and the 80486 695
386, 486 Performance comparison 695
More about pipelining 695

SECTION 23.2: INTEL'S PENTIUM 697
Features of the Pentium 699
Intel's overdrive technology 703

xxvii

SECTION 23.3: RISC ARCRITECTURE 704
Features of RISC 704
Comparison of sample program for RISC and CISC 707
IBM/Motorola RISC 709

SECTION 23.4: PENTIUM PRO PROCESSOR 710
Pentium Pro: internal architecture 710
Pentium Pro is both superpipelined and superscalar 711
What is out-of-order execution? 711
Branch prediction 714
Bus frequency vs. internal frequency in Pentium Pro 714

SECTION 23.5: MMX TECHNOLOGY 715
DSP and multimedia 715
Register aliasing by MMX 715
Data types in MMX 716

SECTION 23.6: PROCESSOR IDENTIFICATION IN INTEL X86 717
Program to identify the CPU 717
CPUID instruction and MMX technology 718

CHAPTER 24: MS DOS STRUCTURE, TSR, AND DEVICE DRIVERS 724

SECTION 24.1: MS DOS STRUCTURE 725
DOS genealogy 725
From cold boot to DOS prompt 725
DOS standard device names 728
More about CONFIG.SYS and how it 1s used 728
What is AUTOEXEC.BAT and how is it used? 729
Types of DOS commands 730

SECTION 24.2: TSR AND DEVICE DRIVERS 731
Executing but not abandoning the program 731
How to make a program resident 731
Invoking the TSR 732
Hooking into hardware interrupts 732
Replacing the CS:IP values in the interrupt vector table 732
Writing a simple TSR~ 732
TSR with hot keys 734
Hooking into timer clock INT 08 735
DOS is not reentrant 736
Device drivers 736
Device driver categories 737

CHAPTER 25: MS DOS MEMORY MANAGEMENT 740

SECTION 25.1: 80x86 PC MEMORY TERMINOLOGY AND
CONCEPTS 741

Conventional memory 741

Upper memory area 741

xxviii

IBM standard using ROM space in the upper memory area 742
Expanded memory 743

Extended memory 746

High memory area (HMA) 746

Shadow RAM 748

DOS MEM command 748

SECTION 25.2: DOS MEMORY MANAGEMENT AND LOADING
HIGH 749
Loading high into HMA 749
Finding holes in the upper memory area 750
EMM386.EXE options and switches 751
Loading high TSR and device driver into upper memory area 754
Emulating expanded memory and using UMB in
386/486/Pentium PC 755
How expanded memory is accessed 756

CHAPTER 26: IC TECHNOLOGY AND SYSTEM DESIGN
CONSIDERATIONS 759

SECTION 26.1: OVERVIEW OF IC TECHNOLOGY 760
MOS vs. bipolar transistors 760
Overview of logic families 761
The case of inverters 761
CMOS inverter 762
Input, output characteristics of some logic families 762
History of logic families 763
Recent advances in logic families 764
Evolution of IC technology in Intel's 80x86 microprocessors 765

SECTION 26.2: IC INTERFACING AND SYSTEM DESIGN
CONSIDERATIONS 766

IC fan-out 766

Capacitance derating 768

Power dissipation considerations 770

Dynamic and static currents 771

Power-down option and Intel's SL series 771

Ground bounce 77t

Filtering the transient currents using decoupling capacitors 774

Bulk decoupling capacitor 774

Crosstalk 774

Transmission line ringing 775

SECTION 26.3: DATA INTEGRITY AND ERROR DETECTION
IN DRAM 776
Soft error and hard error 776
Mean time between failure (MTBF) and FIT for DRAM 777
Error detection and correction 778
ECL and gallium arsenide (GaAs) chips 780

xXix

CHAPTER 27: ISA, EISA, MCA, LOCAL, AND PCI BUS 784

SECTION 27.1: ISA, EISA, AND IBM MICRO CHANNEL 785

Master and slave 785

Bus arbitration 785

Bus protocol 785

Bus bandwidth 786

ISA buses 786

36-pin part of the ISA bus 789
Limitations of the ISA bus 791
IBM Micro Channel Architecture (MCA) 793
Major characteristics of MCA 794
EISA bus 795

EISA slot numbering 797

Bus performance comparison 798

SECTION 27.2: VL BUS AND PCl LOCAL BUSES 799

Definition and merits of local bus 799

VL bus (VESA local bus) characteristics 801
PCI local bus 801

PCI local bus characteristics 801

Plug and play feature 804

PCI connector 804

PCI performance 804

CHAPTER 28: PROGRAMMING DOS, BIOS, HARDWARE WITH C/C++ 8038

SECTION 28.1: BIOS & DOS INTERRUPT PROGRAMMING
WITHC 809

Programming BIOS interrupts with C/C++ 809

Finding the conventional memory size with INT 12H 811

INT 16H and keyboard access 812

Programming INT 21H DOS function calls with C/C++ 812
Accessing segment registers 812

Accessing the carry flag in int86 and intdos functions 814

SECTION 28.2: PROGRAMMING PC HARDWARE WITH C/C++ 815

Accessing 80x86 SEGMENT:OFFSET memory addresses 815
Accessing BIOS data area with C 815

Programming input/output ports with C/C++ 816
Revisiting playing music 816

Accessing parallel printer's (LPT1) data bus with C 816
Finding memory above IMB: the extended memory size 819
Programming the CMOS RAM real-time clock (RTC) 820
Accessing the CMOS RAM bytes 820

Programming CMOS RAM with C/C++ 822

XXX

APPENDIX A: DEBUG PROGRAMMING 825

APPENDIX B: 80x86 INSTRUCTIONS AND TIMING 847

APPENDIX C: ASSEMBLER DIRECTIVES AND NAMING RULES

APPENDIX D: DOS INTERRUPT 21H AND 33H LISTING 898

APPENDIX E: BIOS INTERRUPTS 924

APPENDIX F: ASCII CODES 940

APPENDIX G: /O ADDRESS MAPS 941

APPENDIX H: IBM PC/PS BIOS DATA AREA 952

APPENDIX I: DATA SHEETS 959

REFERENCES 967

INDEX 969

883

xxxi

PREFACE TO VOLUMES | AND 1l

Purpose

This combined volume is intended for use in college-level courses in
which both Assembly language programming and 80x86 PC interfacing are dis-
cussed. It not only builds the foundation of Assembly language programming, but
also provides a comprehensive treatment of 80x86 PC design and interfacing for
students in engineering and computer science disciplines. This volume is intend-
ed for those who wish to gain an in-depth understanding of the internal working
of the IBM PC, PS, and 80x86 compatible computers. It builds a foundation for
the design and interfacing of microprocessor-based systems using the real-world
example of the 80x86 IBM PC. In addition, it can also be used by practicing tech-
nicians, hardware engineers, computer scientists, and hobbyists who want to do
PC interfacing and data acquisition.

Prerequisites

Readers should have a minimal familiarity with the IBM PC and the DOS
operating system in addition to having had an introductory digital course.
Knowledge of other programming languages would be helpful, but is not neces-
sary.

Although a vast majority of current PCs use 386, 486, or Pentium micro-
processors, their design is based on the IBM PC/AT, an 80286 microprocessor
system introduced in 1984. A good portion of PC/AT features, hence its limita-
tions, are based on the original IBM PC, an 8088 microprocessor system, intro-
duced in 1981. In other words, one cannot expect to understand fully the archi-
tectural philosophy of the 80x86 PC and its expansion slot signals unless the
80286 PC/AT and its subset, the IBM PC/XT, are first understood. For this rea-
son, we describe the 8088 and 80286 microprocessors in Chapter 9.

Contents of Volume |

A systematic, step-by-step approach has been used in covering various
aspects of Assembly language programming. Many examples and sample pro-
grams are given to clarify concepts and provide students an opportunity to learn
by doing. Review questions are provided at the end of each section to reinforce
the main points of the section. We feel that one of the functions of a textbook is
to familiarize the student with terminology used in technical literature and in
industry, so we have followed that guideline in this text.

Chapter 0 covers concepts in number systems (binary, decimal, and hex)
and computer architecture. Most students will have learned these concepts in pre-
vious courses, but Chapter 0 provides a quick overview for those students who
have not learned these concepts, or who may need to refresh their memory.

Chapter 1 provides a brief history of the evolution of x86 microproces-
sors and an overview of the internal workings of the 8086 as a basis of all x86
processors, Chapter 1 should be used in conjunction with Appendix A (a tutorial
introduction to DEBUG) so that the student can experiment with concepts being
learned on the PC. The order of topics in Appendix A has been designed to cor-
respond to the order of topics presented in Chapter 1. Thus, the student can begin
programming with DEBUG without having to learn how to use an assembler.

Chapter 2 explains the use of assemblers to create programs. Although
the programs in the book were developed and tested with Microsoft's MASM
assembler, any Intel-compatible assembler such as Borland's TASM may be used.

xxxiii

Chapter 3 introduces the bulk of the logic and arithmetic instructions for
unsigned numbers, plus bitwise operations m C.

Chapter 4 introduces DOS and BIOS interrupts. Programs in Assembly
and C allow the student to get input from the keyboard and send output to the
monitor. In addition, interrupt programming in C is described, as well as how to
put Assembly language code in C programs.

Chapter 5 describes how to use macros to develop Assembly language
programs in a more time-efficient and structured manner. We also cover INT 33H
mouse function calls and mouse programming,.

Chapter 6 covers arithmetic and logic instructions for signed numbers as
well as string processing instructions.

Chapter 7 discusses modular programming and how to develop larger
Assembly language programs by breaking them into smaller modules to be coded
and tested separately. In addition, linking Assembly language modules with C
programs is thoroughly explained.

Chapter 8 introduces some 32-bit concepts of 80386 and 80486 pro-
gramming. Although this book emphasizes 16-bit programming, the 386/486 is
introduced to help the student appreciate the power of 32-bit CPUs. Several pro-
grams are run across the 80x86 family to show the dramatic improvement in clock
cycles with the newer CPUs.

Contents of VVolume Il

Chapter 9 describes the 8088 and 286 microprocessors and supporting
chips in detail and shows how they are used in the original IBM PC/XT/AT. In
addition, the origin and function of the address, data, and control signals of the
ISA expansion slot are described.

Chapter 10 provides an introduction to various types of RAM and ROM
memories, their interfacing to the microprocessor, the memory map of the 80x86
PC, the timing issue in interfacing memory to the ISA bus, and the checksum byte
and parity bit techniques of ensuring data integrity in RAM and ROM.

Chapter 11 is dedicated to the interfacing of /O ports, the use of IN and
OUT instructions in the 80x86, and interfacing and programming of the 8255 pro-
grammable peripheral chip. We describe 1/0 programming in several languages,
as well.

Chapter 12 covers the PC Interface Trainer and Bus Extender, which are
used to interface PCs to devices for data acquisition such as LCDs, stepper
motors, ADC, DAC, and sensors.

Chapter 13 discusses the use of the 8253/54 timer chip in the 80x86 PC,
as well as how to generate music and time delays.

Chapter 14 is dedicated to the explanation of hardware and software inter-
rupts, the use of the 8259 interrupt controller, the origin and assignment of IRQ
signals on the expansion slots of the ISA bus, and exception interrupts in 80x86
MICrOpProcessors.

Chapter 15 is dedicated to direct memory access (DMA) concepts, the use
of the 8237 DMA chip in the 80x86 PC, and DMA channels and associated sig-
nals on the ISA bus.

Chapter 16 covers the basics of video monitors and various video modes
and adapters of the PC, in addition to the memory requirements of various video
boards in graphics mode.

Chapter 17 discusses serial communication principles, the interfacing and
programming of National Semiconductor's 8250/16450/16550 UART chip, Intel's
8251 USART chip, and verifying data integrity using the CRC method.

Chapter 18 covers the interfacing and programming of the keyboard in
the 80x86 PC, in addition to printer port interfacing and programming. In addi-

XXxiv

tion, a discussion of various types of parallel ports such as EPP and ECP is includ-
ed.

Chapter 19 discusses both floppy and hard disk storage organization and
terminology. We also show how to write Assembly language programs to access
files using INT 21H DOS function calls.

Chapter 20 examines the 80x87 math coprocessor, its programming and
interfacing, and 1EEE single and double precision floating point data types.

Chapter 21 explores the programming and hardware of the 386 micro-
processor, contrasts and explains real and protected modes, and discusses the
implementation of virtual memory.

Chapter 22 is dedicated to the interfacing of high-speed memories and
describes various types of DRAM, including EDO and SDRAM, and examines
cache memory and various cache organizations and terminology in detail.

In Chapter 23 we describe the main features of the 486, Pentium and
Pentium Pro and compare these microprocessors with the RISC processors.
Chapter 23 also provides a discussion of MMX technology and how to write pro-
grams to detect which CPU a PC has.

Chapter 24 describes the MS DOS structure and the role of CONFIG.SYS
and batch files in the 80x86 PC, the writing of TSR (terminate and stay resident)
programs and device drivers.

Chapter 25 explains 80x86 PC memory terminology, such as convention-
al memory, expanded memory, upper memory block, high memory area, as well
as MS DOS memory management.

Chapter 26 provides an overview of the IC technology including the
recent advances in the IC fabrication, describes 1C interfacing and system design
issues, and covers error detection and correction.

Chapter 27 is dedicated to the discussion of the various types of PC buses,
such as ISA, EISA, USB, their performance comparisons, the local bus and fea-
tures of the PCI local bus.

In Chapter 28 we show how to use C language to access DOS function
calls, BIOS interrupts, memory, input/output ports, and CMOS RAM of the
80x86.

Appendices

The appendices have been designed to provide all reference material
required for the topics covered in this combined volume so that no additional ref-
erences should be necessary.

Appendix A provides a tutorial introduction to DEBUG. Appendix B pro-
vides a listing of Tntel's 8086 instruction set along with clock cycles for 80x86
microprocessors. Appendix C describes assembler directives with examples of
their use. Appendix D lists some commonly used DOS 21H function calls and
INT 33H mouse functions. Appendix E lists the function calls for various BIOS
interrupts. Appendix F provides a table of ASCII codes. Appendix G lists the 1/O
map of 80x86-based ISA computers. Appendix H provides a description of the
BIOS data arca. Appendix I contains data sheets for various IC chips.

Lab Manual
The lab manual for this series is available on the following web site:

www.microdigitaled.com

XXXV

Acknowiedgments

This book is the result of the dedication, work and love of many individ-
uals. Our sincere and heartfelt appreciation goes out to all of them. First, we must
thank the original reviewers who provided valuable suggestions and encourage-
ment: Mr. William H. Shannon of the University of Maryland, Mr. Howard W.
Atwell of Fullerton College, Mr. David G. Delker of Kansas State University, Mr.
Michael Chen of Duchess Community College, Mr. Yusuf Motiwala of Prairie
View A&M University, and Mr. Donald T. Coston of ITT Technical Institute. We
were truly amazed by the depth and breadth of their knowledge of microproces-
sor-based system design in general and 80x86 PC architecture in particular. We
sincerely appreciate their comments and suggestions.

Thanks also must go to the many students whose comments have helped
shape this book, especially Daniel Woods, Sam Oparah, Herbert Sendeki, Greg
Boyle, Philip Fitzer, Adnan Hindi, Kent Keeter, Mark Ford, Shannon Looper,
Mitch Johnson, Carol Killelea, Michael Madden, Douglas McAlister, David
Simmons, Dwight Brown, Clifton Snyder, Phillip Boatright, Wilfrid Lowe,
Robert Schabel, John Berry, Clyde Knight, Robert Jones (all of DeVry Institute of
Technolgy), Lynnette Garetz (Heald College), Peter Woof (Southem Sydney
Institute, Lidcombe College of Tafe), M. Soleimanzadeh, Mark Lessley, Snehal
Amin, Travis Erck, Gary Hudson, Nathan Noel, Dan Bent, and Frank Fortman.

A word must also be said of our colleagues, especially the late Mr. Allan
Escher, whose encouragement set the making of this series into motion. For the
last 25 years, his dedication and love of microprocessor education were a source
of inspiration to many. A special thanks goes to Mr. James Vignali for his enthu-
siasm in discussing the internal intricacies of the 80x86 PC and his readiness to
keep current with the ever-changing world of the PC.

In addition, we offer our appreciation for the dedicated professionals at
Prentice Hall. Many thanks to Charles Stewart for his continued support and guid-
ance of this series.

Finally, we would like to sincerely thank the following professors from
some outstanding engineering schools whose enthusiasm for the book, sugges-
tions, and kind words have been encouraging to us and made us think we are on
the right track: Dr. Michael Chwialkowski (Electrical Engineering Dept.,
University of Texas at Arlington), Dr. Roger S. Walker (Computer Science
Engineering Dept., University of Texas at Arlington), Dr. Behbood Zoghi
(Electronics Engineering Technology. Texas A&M University).

XXxvi

ABOUT THE AUTHORS

Muhammad Ali Mazidi holds Master's degrees from both Southern
Methodist University and the University of Texas at Dallas, and currently is a.b.d.
on his Ph.D. in the Electrical Engineering Department of Southern Methodist
University. He is a co-founder and chief researcher of Microprocessor Education
Group, a company dedicated to bringing knowledge of microprocessors to the
widest possible audience. He also teaches microprocessor-based system design at
DeVry Institute of Technology in Dallas, Texas.

Janice Gillispie Mazidi has a Master of Science degree in Computer
Science from the University of North Texas. After several years experience as a
software engineer in Dallas, she co-founded Microprocessor Education Group,
where she is the chief technical writer, production manager, and is responsible for
software development and testing.

The Mazidis have been married since 1985 and have two sons, Robert
Nabil and Michael Jamal.

The authors can be contacted at the following address if you have any
comments, suggestions, or if you find any errors.

Microprocessor Education Group
P.O. Box 381970
Duncanville, TX 75138

email: mazidi@mail.dal.devry.edu
or: profmazidi@yahoo.com

The web site www.microdigitaled.com provides much support for this book.

XXxvii

CHAPTER 0

INTRODUCTION TO COMPUTING

To understand the software and hardware of the computer, one must first
master some very basic concepts underlying computer design. In this chapter
(which in the tradition of digital computers can be called Chapter 0}, the fundamen-
tals of numbering and coding systems are presented. Then an introduction to the
workings of the inside of the computer is given. Finally, in the last section we give
a brief history of CPU architecture. Although some readers may have an adeguate
background in many of the topics of this chapter, it is recommended that the material
be scanned, however briefly.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Whereas human beings use base 10 (decimal) arithmetic, computers use the
base 2 (binary) system. In this section we explain how to convert from the decimal
systemto the binary system, and vice versa. The convenient representation of binary
numbers called hexadecimal also is covered. Finally, the binary format of the
alphanumeric code, called ASCII, is explored.

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system
is the fact that human beings have 10 fingers, there is absolutely no speculation
about the reason behind the use of the binary system in computers. The binary
system is used in computers because 1 and 0 represent the two voltage levels of on
and off. Whereas in base 10 there are 10 distinct symbois, 0, 1, 2, ..., 9, in base 2
there are only two, 0 and 1, with which to generate numbers. Base 10 contains digits
0 through 9; binary contains digits 0 and | only. These two binary digits, 0 and 1,
are commonly referred to as bits.

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal
number by 2 repeatedly, keeping track of the remainders. This process continues
unti! the quotient becomes zero. The remainders are then written in reverse order
to obtain the binary number. This is demonstrated in Example 0-1.

Example 0-1
Convert 25, to binary.
Solution:
Quotient Remainder
2572 = 12 1 LSB (least significant bit)
1272 = 6 0
6/2 = 3 0
32 = 1 1
1/2 = 0 1 MSB (most significant bit)

Therefore, 25,5 = 11001,.

Converting from binary to decimai

To convert from binary to decimal, it is important to understand the concept
of weight associated with each digit position. First, as an analogy, recall the weight
of numbers in the base 10 system:

2 CHAPTER 0: INTRODUCTION TO COMPUTING

740683, -

ax10” = 3
8x10* = 80
6x10° = 600
ox10° = 0000
ax10* = 40000
7x10° = 700000

740683

By the same token, each digit position in a number in base 2 has a weight
associated with it:

110101, = Decimal Binary
].><2O = 1x1 = 1 1

ox2! = Ox2 = 0 00

1x22 = Ix4 = 3 100

ox2° = 0x8 = 0 0000

1x2? = 1x16 = 16 10000

127 = 1x32 = 32 100000

53 110101

Knowing the weight of each bit in a binary number makes it simple to add
them together to get its decimal equivalent, as shown in Example 0-2.

Example 0-2
Convert 11001, to decimal.
Solution:
Weight: 16 8 4 2 1
Digits: 1 1 0 0 1
Knowing the weight associated with each binary bit position allows one to
convert a decimal number to binary directly instead of going through the process of
repeated division. This is shown in Example 0-3.
Example 0-3
Use the concept of weight to convert 39, to binary.
Solution:
Weight: 32 16 8 4 2 1
1 0 0 1 1 1
32+ 0+ 0+ 4+ 2+ 1=39

Therefore, 39,5 = 100111,.

Hexadecimal system

Base 16, the hexadecimal system as it is called in computer literature, 18
used as a convenient representation of binary numbers. For example, it is much
casier for a human being to represent a string of 0s and 1s such as 100010010110
as its hexadecimal equivalent of 896H. The binary system has 2 digits, 0 and 1. The
base 10 system has 10 digits, 0 through 9. The hexadecimal (base 16} system must
have 16 digits. In base 16, the first 10 digits, 0 to 9, are the same as in decimal, and
for the remaining six digits, the letters A, B, C, D, E, and F are used, Table 0-1 shows
the equivalent binary, decimal, and hexadecimal representations for 0 to 15.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Converting between binary and hex 12pl€ 0-1: Decimal, Blnlary, and Hex

To represent a binary number Decimal _ Binary @ Hexadecimal
as its equivalent hexadecimal number, 0 0000 0 |
start from the right and group 4 bits at N '

a time, replacing each 4-bit binary 1 0001 1

number with its hex equivalent shown) 0010 2

in Table 0-1. To convert from hex to

binary, each hex digit is replaced with R 3 0011 3

its 4-bit binary equivalent. Converting 4 0100 4

between binary and hex is shown in

Examples 0-4 and 0-5. 5 0101 5

Converting from decimal to hex 6 0110 6
|

Converting from decimal to 7 0111 | 1.
hex could be approached in two ways: 8 1000 | g

1. Convert to binary first and then con- ' ul
vert to hex. Experimenting with this i 9 _1oo1 | 9
method is left to the reader. 10 1010 | A .|

2. Convert directly from decimal to hex :
by the method of repeated division, 11 1011 B ‘
keeping track of the remainders. Ex-
ample 0-6 demonstrates this method — 12 1100 C
of converting decimal to hex. 13 1101 D
Converting from hex to decimal 14 1110 E

Conversion from hex to deci- 15 1111 F

mal can also be approached in two
ways:
1. Convert from hex to binary and then
to decimal.
2. Convert directly from hex to decimal by summing the weight of all digits.
Example 0-7 demonstrates the second method of converting from hex to decimal.

Example 0-4

Represent binary 100111110101 in hex.

Solution:
First the number is grouped into sets of 4 bits: 1001 1111 0101
Then each group of 4 bits is replaced with its hex equivalent:

1001 1111 0101
9 F 5
Therefore, 100111110101, = 9F5 hexadecimal.

Example 0-5

Convert hex 29B to binary.

Solution:
2 9 B
= 0010 1001 1011
Dropping the leading zeros gives 1010011011,

CHAPTER 0: INTRODUCTION TO COMPUTING

Example 0-6

(a) Convert 45, to hex.

Solution: Quotient Remainder
45/16 = 2 13 (hex D) (least significant digit}
2/16 = 0 2 (most significant digit)

Therefore, 45,5 = 2D

(b) Convert decimal 629 to hexadecimal.

Solution: Quotient Remainder
629/16 = 39 5 (least significant digit)
39/i6 = 2 7
2/16 = 0 2 {most significant digit)

Therefore, 629, = 275 .

(c) Convert 1714 base 10 to hex.

Solution: Quotient Remainder
1714/16 = 107 2 (least significant digit)
107/16 = 6 11 (hex B)
6/16 = 0 6 (most significant digit)

Thel‘efore, 171410 = 6B216'

Example 0-7
Convert the following hexadecimal numbers to decimal.
(a) 6B216
Solution:
6B2 hexadecimal = 160 = 2x1 =
11x161 = 11x16 = 176
6x162 = 6x256 = 1536
1714
Therefore, 6B2,¢ = 1714,
(b) 9F2D,
Solution:
9F2D hexadecimal = 13x169 = 13x1 = 13
ox161 = 2x16 = 32
15x16% = 15x256 = 3840
ox163 = 9x4096 = 36864
40749

Therefore, 9F2D16 = 40749]0.

SECTION 0.1: NUMBERING AND CODING SYSTEMS

Decimal Binary Hex
Counting in bases 10, 2, and 16
_ _ 0 00000 0
To show the relationship between 1 00001 1
all three bases, in Figure 0-1 we show the 2 00010 Z
sequence of numbers from 0 to 31 in deci- 3 00011 3
mal, along with the equivalent binary and 4 00100 4
hex numbers. Notice in each base that > 00101 5
when one more is added to the highest g 8 8 % %g g
digit, that digit becomes zero and a 1 is 3 01000 2
carried to the next-highest digit position. 9 01001 g
For example, in decimal, 9+ I =0 witha 10 01010 2
carry to the next-highest position. In bi- 11 01011 B
nary, 1 + 1 =0 with a carry; similarly, in 12 01100 C
hex, F + 1 =0 with a carry. 13 01101 D
14 01110 E
Table 0-2: Binary Addition ! 2 g : é é : o
‘a ‘ ! ! 17 10001 11
4B Carry Sum 18 10010 12
L 0+0 _ 0 0 19 10011 13
' B i 20 10100 14
0+1 0 IR 2% 1810(1) 15
2 1011 16
—1+0 0 I 23 10111 17
1+1 10 24 11000 18
' 25 11001 19
Addition of binary and hex numbers %? % %8% 8 %%
The addition of binary numbers is 23 11197 1
a very straightforward process. Table 0-2 30 11110 1E
shows the addition of two bits. The dis- 31 11111 1F
cussion of subtraction of binary numbers
is bypassed since all computers use the
addition process to implement subtrac-

tion. Although computers have adder cir- Figure 0-1. Counting in 3 Bases
cuitry, there is no separate circuitry for

subtractors. Instead, adders are used in conjunction with 2% complement circuitry
to perform subtraction. In other words, to implement "x — »", the computer takes
the 2’s complement of y and adds it to x. The concept of 2’s complement is reviewed
next, but the process of subtraction of two binary numbers using 2’s complement is
shown in detail in Chapter 3. Example 0-8 shows the addition of binary numbers.

Example 0-8
Add the following binary numbers. Check against their decimal equivalents,
Solution:
Binary Decimal
1101 13
1001 9
+ 10110 22
101100 44

2’s complement

To get the 2’s complement of a binary number, invert all the bits and then
add 1 to the result. Inverting the bits is simply a matter of changing all Os to 1s and
Isto Os. This is called the / 5 complement. See Example 0-9.

CHAPTER 0: INTRODUCTION TO COMPUTING

Example 0-9

Solution:

+

Take the 2’s complement of 10011101,

10011101 binary number

01100010 I’s complement
1

01100011 2’s complement

Addition and subtraction of hex numbers

In studying issues related to software and hardware of computers, it is often
necessary to add or subtract hex numbers. Mastery of these techniques is essential.
Hex addition and subtraction are discussed separately below.

Addition of hex numbers

This section describes the process of adding hex numbers. Starting with
the least significant digits, the digits are added together. If the result is less than 16,
write that digit as the sum for that position. Ifitis greater than 16, subtract 16 from
it to get the digit and carry 1 to the next digit. The best way to explain this s by
example, as shown in Example 0-10.

Example 0-10

Solution:

+ 94BE
B897

23D9

LSD: 9+ 14
1+13+11
1+ 3+4 = 8
MSD: 2+9=B

Perform hex addition: 23D9 + 84BE.

It

23 23 - 16 = 7 with a carry to next digit
25 25 — 16 = 9 with a carry to next digit

Subtraction of hex numbers

In subtracting two hex numbers, if the second digit is greater than the first,
borrow 16 from the preceding digit. See Example 0-11.

Example 0-11

Solution:
59F
— 2B8
2E7
LSD:

MSD:

Perform hex subtraction: 59F — 2B&.

8 from 15=7
11 from 25 (9 + 16) = 14, whichis E
2from4(5-1)=2

SECTION 0.1: NUMBERING AND CODING SYSTEMS

ASCIl code

The discussion so far has revolved around the representation of number
systems. Since all information in the computer must be represented by Os and s,
binary patterns must be assigned-to letters and other characters. In the 1960s a
standard representation called ASCI7 (American Standard Code for Information
Interchange) was established. The ASCII (pronounced "ask-E") code assigns binary
patterns for numbers 0 to 9, all the letters of the English alphabet, both uppercase
(capital) and lowercase, and many control codes and punctuation marks. The great
advantage of this system is that it is used by most computers, so that information
can be shared among computers. The ASCII system uses a total of 7 bits to represent
each code. For example, 100 0001 is assigned to the uppercase letter "A" and 110
0001 is for the lowercase "a". Often, a zero is placed in the most significant bit
position to make it an 8-bit code. Figure 0-2 shows selected ASCII codes. A
complete list of ASCII codes is given in Appendix F. The use of ASCII is not only
standard for keyboards used in the United States and many other countries but also
provides a standard for printing and displaying characters by output devices such
as printers and monitors.

The pattern of ASCII codes was designed to allow for easy manipulation of ASCII data. For example,
digits 0 through 9 are represented by ASCII codes 30 through 39. This enables a program to easily
convert ASCII to decimal by masking off the "3" in the upper nibble. As another example, notice in
the codes listed below that there is a relationship between the uppercase and lowercase letters.
Namely, uppercase letters are represented by ASCII codes 41 through 5A while lowercase letters are
represented by ASCII codes 61 through 7A. Looking at the binary code, the only bit that is different
between uppercase "A" and lowercase "a" is bit 5. Therefore conversion between uppercase and low-
ercase is as simple as changing bit 5 of the ASCII code.

Hex Symbol Hex Symbol
41 A 61 a
42 B 62 b
43 C 63 c
44 D 64 d
45 E 65 e
48 F 66 f
47 G 67 g
48 H 68 h
49 | 69 i
4A J 6A i
4B K 6B k
4C L @ I
4D M €D m
4E N 6E n
4F O 6F o
50 P 70 p
51 Q 71 q
52 R 72 r
53 S 73 S
54 T 74 i
55 U 75 u
56 v 76 v
57 w 77 W
58 X 78 X
59 Y 79 y
5A Z 7A z

Figure 0-2. Alphanumeric ASCII Codes

8 CHAPTER 0: INTRODUCTION TO COMPUTING

i bl

SECTION 0.2:

Review Questions

Why do computers use the binary number system instead of the decimal system?
Convert 3410 to binary and hex.

Convert 1101012 to hex and decimal.

Perform binary addition: 101100 + 101.

Convert 1011007 to its 2°s complement representation.

Add 36BH -+ F6H.

Subtract 36BH — F6H.

Write "80x86 CPUs" in its ASCII code (in hex form).

INSIDE THE COMPUTER

In this section we provide an introduction to the organization and internal
working of computers. The model used is generic, but the concepts discussed are
applicable to all computers, including the IBM PC, PS/2, and compatibles. Before
embarking on this subject, it will be helpful to review definitions of some of the
most widely used terminology in computer literature, such as K, mega, giga, byte,
ROM, RAM, and so on.

Some important terminology

One of the most important features of a computer is how much memory it
has. Next we review terms used to describe amounts of memory in IBM PCs and
compatibles. Recall from the discussion above that a bit is a binary digit that can
have the value 0 or 1. A byte is defined as 8 bits. A nibble is half a byte, or 4 bits.
Aword is two bytes, or 16 bits. The following display is intended to show the relative
size of these units. Of course, they could all be composed of any combination of
zeros and ones.

Bit 0
Nibble 0000
Byte 0000 0000
Word 0000 0000 0C00 0COC

A kilobyte is 210 bytes, which is 1024 bytes. The abbreviation K is often
used. For example, some floppy disks hold 356K bytes of data. A megabyte, or
meg as some call it, is 220 bytes. That is a little over 1 million bytes; it is exactly
1,048,576. Moving rapidly up the scale in size, a gigabyte is 230 bytes (over 1
billion), and a ferabyte is 240 bytes (over 1 trillion). As an example of how some
of these terms are used, suppose that a given computer has 16 megabytes of memory.
That would be 16 x 229, or 24 x 220, which is 224, Therefore 16 megabytes is 224
bytes.

Two types of memory commonly used in microcomputers are RAM, which
stands for random access memory (sometimes called read/write mentory),
and ROM, which stands for read-only memory. RAM is used by the computer for
temporary storage of programs that it is running. That data is lost when the computer
is turned off. For this reason, RAM is sometimes called volatile memory. ROM
contains programs and information essential to operation of the computer. The
information in ROM is permanent, cannot be changed by the user, and is not lost
when the power is turned off. Therefore, it is called nonvolatile memory.

Internal organization of computers

The internal working of every computer can be broken down into three
parts: CPU (central processing unit), memory , and /O (input/output) devices (see
Figure 0-3). The function of the CPU is to execute (process) information stored in
memory. The function of /O devices such as the keyboard and video monitor is to
provide a means of communicating with the CPU. The CPU is connected to memory

SECTION 0.2: INSIDE THE COMPUTER

and I/O through strips of wire called a bus. The bus nside a computer carries
information from place to place just as a street bus carmes people from place to place.
In every computer there are three types of buses: address bus, data bus, and control
bus.

For a device (memory or [/O) to be recognized by the CPU, it must be
assigned an address. The address assigned to a given device must be unique; no
two devices are allowed to have the same address. The CPU puts the address (of
course, in binary) on the address bus, and the decoding circuitry finds the device.
Then the CPU uses the data bus either to get data from that device or to send data
to it. The control buses are used to provide read or write signals to the device to
indicate if the CPU is asking for information or sending it information. Of'the three
buses, the address bus and data bus determine the capability of a given CPU.

Address bus
]]

Memory Peripherals
CPU {monitor,
(RAM, ROM) printer, etc.)
] J
Data bus

Figure 0-3. Inside the Computer

More about the data bus

Since data buses are used to carry information in and out of a CPU, the more
data buses available, the better the CPU. If one thinks of data buses as highway
lanes, it is clear that more lanes provide a better pathway between the CPU and its
external devices (such as printers, RAM, ROM, etc.; see Figure 0-4). By the same
token, that increase in the number of lanes increases the cost of construction. More
data buses mean a more expensive CPU and computer. The average size of data
buses in CPUs varies between 8 and 64. Early computers such as Apple 2 used an
8-bit data bus, while supercomputers such as Cray use a 64-bit data bus. Data buses
are bidirecttonal, since the CPU must use them either to receive or to send data. The
processing power of a computer is related to the size of its buses, since an 8-bit bus
can send out 1 byte a time, but a 16-bit bus can send out 2 bytes at a time, which is
twice as fast.

More about the address bus

Since the address bus is used to identify the devices and memory connected
to the CPU, the more address buses available, the larger the number of devices that
can be addressed. In other words, the number of address buses for a CPU determines
the number of locations with which it can communicate. The number of locations
is always equal to 2%, where x is the number of address lines, regardless of the size
of the data bus. For example, a CPU with 16 address lines can provide a total of
65,536 (2'%) or 64K bytes of addressable memory. Each location can have a
maximum of 1 byte of data. This is due to the fact that all general-purpose
microprocessor CPUs are what is called byte addressable. As another example, the
IBM PC AT uses a CPU with 24 address lings and 16 data lines. In this case the
total accessible memory is 16 megabytes (224 = 16 megabytes). In this example
there would be 224 locations, and since each location is one byte, there would be 16
megabytes of memory. The address bus is a unidirectional bus, which means that
the CPU uses the address bus only to send out addresses. To summarize: The total
number of memory locations addressable by a given CPU is always equal to 2*
where x is the number of address bits, regardless of the size of the data bus.

10 CHAPTER (: INTRODUCTION TO COMPUTING

CPU

Read/
write

Address bus

f L 4 4 y v y

RAM ROM Printer Disk Monitor Key-
| board
! ! 1 i 1 \
Data bus
Control bus

Figure 0-4. Internal Organization of Computers

CPU and its relation to RAM and ROM

For the CPU to process information, the data must be stored in RAM or
ROM. The function of ROM in computers is to provide information that is fixed
and permanent. This is information such as tables for character patterns to be
displayed on the video monitor, or programs that are essential to the working of the
computer, such as programs for testing and finding the total amount of RAM
installed on the system, or programs to display information on the video monitor.
In contrast, RAM is used to store information that is not permanent and can change
with time, such as various versions of the operating system and application packages
such as word processing or tax calculation packages. These programs are loaded
into RAM to be processed by the CPU. The CPU cannot get the information from
the disk directly since the disk is too slow. In other words, the CPU gets the
information to be processed, first from RAM (or ROM). Only if it is not there does
the CPU seek it from a mass storage device such as a disk, and then it transfers the
information to RAM. For this reason, RAM and ROM are sometimes referred to
as primary memory and disks are called secondary memory. Figure 0-4 shows a
block diagram of the internal organization of the PC.

Inside CPUs

A program stored in memory provides instructions to the CPU to perform
an action. The action can simply be adding data such as payroll data or controlling
a machine such as a robot. It is the function of the CPU to fetch these instructions
from memory and execute them. To perform the actions of fetch and execute, all
CPUs are equipped with resources such as the following:

. Foremost among the resources at the disposal of the CPU are a number of registers.

The CPU uses registers to store information temporarily. The information could be
two values to be processed, or the address of the value needed to be fetched from
memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit, or even 64-bit
registers, depending on the CPU. In general, the more and bigger the registers, the
better the CPU. The disadvantage of more and bigger registers is the increased cost
of such a CPU.

. The CPU also has what is called the ALU (arithmetic/logic unit). The ALU section

of the CPU is responsible for performing arithmetic functions such as add, subtract,
multiply, and divide, and logic functions such as AND, OR, and NOT.

. Every CPU has what is called a program counter. The function of the program

counter is to point to the address of the next instruction to be executed. As each
instruction is executed, the program counter is incremented to point to the address
of the next instruction to be executed. It is the contents of the program counter that
are placed on the address bus to find and fetch the desired instruction. In the IBM
PC, the program counter is a register called 1P, or the instruction pointer.

SECTION 0.2: INSIDE THE COMPUTER

11

4. The function of the instruction decoder is to interpret the instruction fetched into

1.

the CPU. One can think of the instruction decoder as a kind of dictionary, storing
the meaning of each instruction and what steps the CPU should take upon receiving
a given instruction. Just as a dictionary requires more pages the more words it
defines, a CPU capable of understanding more instructions requires more transistors
to design.

internal working of computers

To demonstrate some of the concepts discussed above, a step-by-step
analysis of the process a CPU would go through to add three numbers is given next.
Assume that an imaginary CPU has registers called A, B, C, and D. It has an 8-bit
data bus and a 16-bit address bus. Therefore, the CPU can access memory from
addresses 0000 to FFFFH (for a total of 10000H locations). The action to be
performed by the CPU is to put hexadecimal value 21 into register A, and then add
to register A values 42H and 12H. Assume that the code for the CPU to move a
value to register A is 1011 0000 (BOH) and the code for adding a value to register
Ais 0000 0100 (04H). The necessary steps and code to perform them are as follows.

Action Code Data
Move value 21H into register A BOH 21H
Add value 42H to register A 04H 42H
Add value 12H to register A 04H 12H

If the program to perform the actions listed above is stored in memory
locations starting at 1400H, the following would represent the contents for each
memory address location:

Memory address Contents of memory address

1400 {B0) the code for moving a value to register A
1401 {21) the value to be moved

1402 (04) the code for adding a value to register A
1403 {42) the value to be added

1404 (04) the code for adding a value to register A
1405 (12) the value to be added

1406 (F4) the code for halt

The actions performed by the CPU to run the program above would be as
follows:
The CPU’s program counter can have a value between 0000 and FFFFH. The
program counter must be set to the value 1400H, indicating the address of the first
instruction code to be executed. After the program counter has been loaded with
the address of the first instruction, the CPU is ready to execute.

2. The CPU puts 1400H on the address bus and sends it out. The memory circuitry

finds the location while the CPU activates the READ signal, indicating to memeory
that it wants the byte at location 1400H. This causes the contents of memory
location 1400H, which is BO, to be put on the data bus and brought into the CPU.

. The CPU decodes the instruction BO with the help of its instruction decoder

dictionary. When it finds the definition for that instruction it knows it must bring
into register A of the CPU the byte in the next memory location. Therefore, it
commands its controller circuitry to do exactly that. When it brings in value 21H
from memory location 1401, it makes sure that the doors of all registers are closed
exceptregister A. Therefore, when value 21H comes into the CPU it will go directly
into register A. After completing one instruction, the program counter points to the
address of the next instruction to be executed, which 1n this case is 1402H. Address
1402 is sent out on the address bus to fetch the next instruction,

. From memory location 1402H it fetches code 04H. After decoding, the CPU knows

that it must add to the contents of register A the byte sitting at the nextaddress (1403).
After it brings the value (in this case 42H) into the CPU, it provides the contents of

12

CHAPTER 0: INTRODUCTION TO COMPUTING

B i e

@

9.

10.
I
12.
13.

SECTION 0.3:

register A along with this value to the ALU to perform the addition. It then takes
the result of the addition from the ALU’s output and puts it in register A. Meanwhile
the program counter becomes 1404, the address of the next instruction.

. Address 1404H is put on the address bus and the code 1s fetched into the CPU,

decoded, and executed. This code is again adding a value toregister A. The program
counter is updated to 1406H.

. Finally, the contents of address 1406 are fetched in and executed. This HALT

instruction tells the CPU to stop incrementing the program counter and asking for
the next instruction. In the absence of the HALT, the CPU would continue updating
the program counter and fetching instructions.

Now suppose that address 1403H contained value 04 instead of 42H. How
would the CPU distinguish between data 04 to be added and code 047 Remember
that code 04 for this CPU means move the next value into register A. Therefore,
the CPU will not try to decode the next value. It simply moves the contents of the
following memory location into register A, regardless of its value.

Review Questions

How many bytes is 24 kilobytes?

What does "RAM" stand for? How is it used in computer systems?

What does "ROM" stand for? How is it used in computer systems?

Why is RAM called volatile memory?

List the three major components of a computer system.

What does "CPU" stand for? Explain its function in a computer.

List the three types of buses found in computer systems and state briefly the pur-
pose of each type of bus.

State which of the following is unidirectional and which is bidirectional.

(a) data bus (b) address bus

If an address bus for a given computer has 16 lines, then what is the maximum
amount of memory it can access?

What does "ALU" stand for? What is its purpose?

How are registers used in computer systems?

What is the purpose of the program counter?

What is the purpose of the instruction decoder?

BRIEF HISTORY OF THE CPU

In the 1940s, CPUs were designed using vacuum tubes. The vacuum tube
was bulky and consumed a lot of electricity. For example, the first large-scale digital
computer, ENIAC, consumed 130,000 watts of power and occupied 1500 square
feet. The invention of transistors changed all of that. In the 1950s, transistors
replaced vacuum tubes in the design of computers. Then in 1959, the first IC
(integrated circuit) was invented. This set into motion what many people believe is
the second industrial revolution. In the 1960s the use of IC chips in the design of
CPU boards became common. It was not until the 1970s that the entire CPU was
put on a single IC chip. The first working CPU on a chip was invented by Intel in
1971. This CPU was called a microprocessor. The first microprocessor, the 4004,
had a 4-bit data bus and was made of 2300 transistors. It was designed primarily
for the hand-held calculator but soon came to be used in applications such as
traffic-light controllers. The advances in IC fabrication made during the 1970s made
it possible to design microprocessors with an 8-bit data bus and a 16-bit address bus.
By the late 1970s, the Intel 8080/85 was one of the most widely used microproces-
sors, appearing in everything from microwave ovens to homemade computers.
Meanwhile, many other companies joined in the race for faster and better micro-
processors. Notable among them was Motorola with its 6800 and 68000 microproc-
essors. Apple’s Macintosh computers use the 68000 series microprocessors. Figure
0-5 shows a block diagram of the internal structure of a CPU.

SECTION 0.3: BRIEF HISTORY OF THE CPU

13

Address

bus
Program counter
Instruction register
| Instruction Control
decoder, timing, T buses
and control
Flags ALU
1 Data
I bus
Register A
Register B
Internal Register C
buses Register D

Figure 0-5. internal Block Diagram of a CPU

CISC vs. RISC

Until the early 1980s, all CPUs, whether single-chip or whole-board,
followed the CISC (complex instruction set computer) design philosophy. CISC
refers to CPUs with hundreds of instructions designed for every possible situation.
To design CPUs with so many instructions consumed not only hundreds of thou-
sands of transistors, but also made the design very complicated, time-consuming,
and expensive. In the early 1980s, a new CPU design philosophy called RISC
(reduced instruction set computer) was developed. The proponents of RISC argued
that no one was using all the instructions etched into the brain of CISC-type CPUs.
Why not streamline the instructions by simplifying and reducing them from hun-
dreds to around 40 or so and use all the transistors that are saved to enhance the
power of the CPU? Although the RISC concept had been explored by computer
scientists at IBM as early as the 1970s, the first working single-chip RISC micro-
processor was implemented by a group of researchers at the University of Califorma
at Berkeley in 1980. Today the RISC design philosophy is no longer an experiment
limited to research laboratories. Since the late 1980s, many companies designing
new CPUs (either single-chip or whole-board) have used the RISC philosophy. It
appears that eventually the only CISC microprocessors remaining in use will be
members of the 80x86 family (8086, 8088, 80286, 80386, 80486, 80586, etc.) and
the 680x0 family (68000, 68010, 68020, 68030, 68040, 68050, etc.). The 80x86
will be kept alive by the huge base of IBM PC, PS, and compatible computers, and
the Apple Macintosh is prolonging the life of 680x0 microprocessors.

Review Questions

1. What is a microprocessor?

2. Describe briefly how advances in technology have affected the size, cost, and avail-
ability of computer systems.

3. Explain the major difference between CISC and RISC computers.

CHAPTER 0: INTRODUCTION TO COMPUTING

SUMMARY

PROBLEMS

The binary number system represents all numbers with a combination of
the two binary digits, 0 and 1. The use of binary systems is necessary in digital
computers because only two states can be represented: on or off. Any binary number
can be coded directly into its hexadecimal equivalent for the convenience of humans.
Converting from binary/hex to decimal, and vice versa, is a straightforward process
that becomes casy with practice. The ASCII code is a binary code used to represent
alphanumeric data internally in the computer. It is frequently used in peripheral
devices for input and/or output.

The major components of any computer system are the CPU, memory, and
I/0 devices. "Memory™ refers to temporary or permanent storage of data. In most
systems, memory can be accessed as bytes or words. The terms kilobyte, megabyte,
gigabyte, and terabyte are used to refer to large numbers of bytes. There are two
main types of memory in computer systems: RAM and ROM. RAM (random access
memory) is used for temporary storage of programs and data, ROM (read-only
memory) is used for permanent storage of programs and data that the computer
system must have in order to function. All components of the computer system are
under the control of the CPU. Peripheral devices such as 1I/O (input/output) devices
allow the CPU to communicate with humans or other computer systems. There are
three types of buses in computers: address, control, and data. Control buses are used
by the CPU to direct other devices. The address bus is used by the CPU to locate a
device or a memory location. Data buses are used to send information back and forth
between the CPU and other devices.

As changes in technology were incorporated into the design of computers,
their cost and size were reduced dramatically. The earliest computers were as large
as an average home and were available only to a select group of scientists. The
invention of transistors and subsequent advances in their design have made the
computer commonly available, As the limits of hardware innovation have been
approached, computer designers are looking at new design techniques, such as RISC
architecture, to enhance computer performance.

. Convert the following decimal numbers to binary.

(a) 12 (b) 123 {c)63 (d) 128 (e) 1000
Convert the following binary numbers to decimal.
(a) 100100 (b) 1000001 {c) 11101 (d) 1010 (¢) 00100010

Convert the values in Problem 2 to hexadecimal.

Convert the following hex numbers to binary and decimal.

(a) 2B9H (b) F44H {c) 912H (d) 2BH (e) FFFFH
Convert the values in Problem 1 to hex.

Find the 2’s complement of the following binary numbers.

(a) 1001010 (b) 111001 (c) 10000010 (d) 111110001

Add the following hex values.

(a) 2CH+3FH (b) F34H+5D6H (c) 20000H+12FFH (d) FFFFH+2222H
Perform hex subtraction for the following.

(a) 24FH-129H (b) FE9H-5CCH (c) 2FFFFH-FFFFFH (d) 9FF25H-4DD99H
Show the ASCII codes for numbers 0, 1, 2, 3, ..., 9 in both hex and binary.
Show the ASCII code (in hex) for the following string:

"UJ.S.A. is a country” CR,LF

"in North America" CR,LF

CR is carriage return

LF is line feed

SUMMARY

15

11.

12.

13.

14.

15.

16.

17.
18.
20.

Answer the following:

(a) How many nibbles are 16 bits?

{(b) How many bytes are 32 bits?

(c) If a word is defined as 16 bits, how many words is a 64-bit data item?

(d) What is the exact vaiue (in decimal) of 1 meg?

(e) How many K is | meg?

(f) What is the exact value (in decimal) of giga?

(g) How many K is 1 giga?

(h) How many meg is 1 giga?

(1) If a given computer has a total of 8 megabytes of memory, how many bytes
(in decimal} is this? How many kilobytes is this?

A given mass storage device such as a hard disk can store 2 gigabytes of informa-

tion. Assuming that each page of text has 25 rows and each row has 80 columns

of ASCII characters (each character = 1 byte), approximately how many pages of

information can this disk store?

In a given byte-addressable computer, memory locations 10000H to 9FFFFH are

available for user programs. The first location is 10000H and the last location is

9FFFFH. Calculate the following:

(a) The total number of bytes available (in decimal)

(b) The total number of kilobytes (in decimal)

A given computer has a 32-bit data bus. What is the largest number that can be

carried into the CPU at a time?

Below are listed several computers with their data bus widths. For each com-

puter, list the maximum value that can be brought into the CPU at a time (in both

hex and decimal).

(a) Apple 2 with an 8-bit data bus

(b) IBM PS/2 with a [6-bit data bus

(c) IBM PS/2 model 80 with a 32-bit data bus

(d) CRAY supercomputer with a 64-bit data bus

Find the total amount of memory, in the units requested, for each of the following

CPUs, given the size of the address buses.

(a) 16-bit address bus (in K)

(b) 24-bit address bus (in meg)

(c) 32-bit address bus (in megabytes and gigabytes)

(d) 48-bit address bus (in megabytes, gigabytes and terabytes)

Regarding the data bus and address bus, which is unidirectional and which is bi-

directional?

Which register of the CPU holds the address of the instruction to be fetched?

Which section of the CPU is responsible for performing addition?

Which type of CPU (CISC or RISC) has the greater variety of instructions?

ANSWERS TO REVIEW QUESTIONS

SECTION 0.1: NUMBERING AND CODING SYSTEMS

NS RN

010100
461
275

. Computers use the binary system because each bit can have one of two voltage levels: on and off.
. 3445 =100010,= 2245
. 1MO1012 = 3545 = 534
. 1110001

38307838362043505573

16

CHAPTER 0: INTRODUCTION TO COMPUTING

SECTION 0.2: INSIDE THE COMPUTER

— —
PRToe® N oupwe Mo

24 576

random access memory; it is used for temporary storage of programs that the CPU is running, such as
the operating system, word processing programs, efc.

read-only memory; it is used for permanent programs such as those that control the keyboard, etc.
the contents of RAM are lost when the computer is powered off

the CPU, memory, and /O devices

central processing unit; it can be considered the "brain" of the computer, it executes the programs and
controls all other devices in the computer

the address bus carries the location (address) needed by the CPU; the data bus carries information in
and out of the CPU; the control bus is used by the CPU to send signals controlling /O devices

(a) bidirectional {b) unidirectionai

64K, or 65,536 bytes

arithmetic/logic unit; it performs all arithmetic and logic operations

for temporary storage of information

. it holds the address of the next instruction to be executed
. it tells the CPU what steps to perform for each instruction

SECTION 0.3: BRIEF HISTORY OF THE CPU

. a CPU on a single chip

The transition from vacuum tubes to transistors to ICs reduced the size and cost of computers and
therefore made them more widely available.
CISC computers use many instructions whereas RISC computers use a small set of instructions.

ANSWERS TO REVIEW QUESTIONS

17

CHAPTER 1

THE 80x86 MICROPROCESSOR

18 CHAPTER 1: THE 80x86 MICROPROCESSOR

SECTION 1.1:

This chapter begins with a history of the evolution of Intel’s family of
microprocessors. The second section is an overview of the internal workings of
80x86 microprocessors. An introductionto 80x86 Assembly language programming
is given in the third section. The fourth and fifth sections cover segments of
Assembly language programs and how physical addresses are generated. Finally,
the last section describes in detail the addressing modes of the 80x86.

BRIEF HISTORY OF THE 80x86 FAMILY

In this section we trace the evolution of Intel’s family of microprocessors
from the late 1970s, when the personal computer had not yet found widespread
acceptance, to the powerful microcomputers widely in use today.

Evolution from 8080/8085 to 8086

In 1978, Intel Corporation introduced a 16-bit microprocessor called the
8086. This processor was a major improvement over the previous generation
8080/8085 series Intel microprocessors in several ways. First, the 8086’s capacity
of 1 megabyte of memory exceeded the 8080/8085’s capability of handling a
maximum of 64K bytes of memory. Second, the 8080/8085 was an 8-bit system,
meaning that the microprocessor could work on only 8 bits of data at a time. Data
larger than 8 bits had to be broken into B-bit pieces to be processed by the CPU. In
contrast, the 8086 is a 16-bit microprocessor. Third, the 8086 was a pipelined
processor, as opposed to the nonpipelined 8080/8085. In a system with pipelining,
the data and address buses are busy transferring data while the CPU is processing
information, thereby increasing the effective processing power of the microproces-
sor. Although pipelining was a common feature of mini- and mainframe computers,
Intel was a pioneer in putting pipelining on a single-chip microprocessor. Pipelining
is discussed further in Section 1.2.

Evolution from 8086 to 8088

The 8086 is a microprocessor with a 16-bit data bus internally and exter-
nally, meaning that all registers are 16 bits wide and there is a 16-bit data bus to
transfer data in and out of the CPU. Although the introduction of the 8086 marked
a great advancement over the previous generation of microprocessors, there was
still some resistance in using the 16-bit external data bus since at that time all
peripherals were designed around an 8-bit microprocessor. In addition, a printed
circuit board with a 16-bit data bus was much more expensive. Therefore, Intel
came out with the 8088 version. It is identical to the 8086 as far as programming
is concerned, but externally it has an 8-bit data bus instead of a 16-bit bus. It has
the same memory capacity, | megabyte,

Success of the 8088

In 1981, Intel’s fortunes changed forever when IBM picked up the 8088 as
their microprocessor of choice in designing the IBM PC. The 8088-based IBM PC
was an enormous success, largely because IBM and Microsoft (the developer of the
MS-DOS operating system) made it an open system, meaning that all documentation
and specifications of the hardware and software of the PC were made public. This
made it possible for many other vendors to clone the hardware successfully and thus
spawned a major growth in both hardware and software designs based on the IBM
PC. Thisis in contrast with the Apple computer, which was a closed system, blocking
any attempt at cloning by other manufacturers, both domestically and overseas.

Other microprocessors: the 80286, 80386, and 80486

With a major victory behind Intel and a need from PC users for a more
powerful microprocessor, Intel introduced the 80286 in 1982. Its features included
16-bit internal and external data buses; 24 address lines, which give 16 megabytes
of memory (224 = 16 megabytes); and most significantly, virtual memory. The

SECTION 1.1: BRIEF HISTORY OF THE 80x86 FAMILY

19

80286 can operate in one of two modes: real mode or protected mode. Real mode
is simply a faster 8088/8086 with the same maximum of 1 megabyte of memory.
Protected mode allows for 16M of memory but is also capable of protecting the
operating system and programs from accidental or deliberate destruction by a user,
a feature that is absent in the single-user 8088/8086. Virtual memory is a way of
fooling the microprocessor into thinking that it has access to an almost unlimited
amount of memory by swapping data between disk storage and RAM. IBM picked
up the 80286 for the design of the IBM PC AT, and the clone makers followed IBM’s
lead.

With users demanding even more powerful systems, in 1985 Intel intro-
duced the 80386 (sometimes called 80386DX), internally and externally a 32-bit
microprocessor with a 32-bit address bus. It is capable of handling physical memory
of up to 4 gigabytes (232). Virtual memory was increased to 64 terabytes (246). All
microprocessors discussed so far were general-purpose microprocessors and could
not handle mathematical calculations rapidly. For this reason, Intel introduced
numeric data processing chips, called math coprocessors, such as the 8087, 80287,
and 80387. Later Intel introduced the 386SX, which is internally identical to the
80386 but has a 16-bit external data bus and a 24-bit address bus which gives a
capacity of 16 megabytes (224) of memory. This makes the 386SX system much
cheaper. With the introduction of the 80486 in 1989, Intel put a greatly enhanced
version of the 80386 and the math coprocessor on a single chip plus additional
features such as cache memory. Cache memory is static RAM with a very fastaccess
time. Table 1-1 summarizes the evolution of Intel’s microprocessors. It must be
noted that all programs written for the 8086/88 will run on 286, 386, and 486
computers. The advances made in the Pentium and Pentium Pro are summarized in

Chapter 9.
Table 1-1: Evolution of Intel’s Microprocessors
Product 8080 8085 | 8086 | 8088 | 80286 80386 | _ 80486
Year introduced } 1974 : 1976 1978 1979 1982 ' 1985 1989 :
Clockrate (MHz) | 2-3 | 3-8 [5-10 5-8 | 6-16 | 16:33 _ 25-50
No. transistors 14500 | 6500 \ 29.000 | 29,000 | 130,000 | 275,000 | 1.2 million____ji
Physical memory 64K | 64K L 1M IM _16M = 4G j 4G ii
Internal databus 8 8 16 . 16 . 16 32 32
‘Externaldatabus . 8 | 8 16 8 | 16) 32
Address bus - 16 16 i 20 20 0 24 - 32 32
Data type (bits) 8 8 | 816 | 8,16 | 8,16 '8, 16,32 8.16,32

Notes:
1. The 80386SX architecture is the same as the 80386 except that the external data bus is 16 bits in the $X as opposed 1o
32 bits, and the address bus is 24 bits instead of 32; therefore, physical memory is 16MB.
2. Clock rates range from the rates when the product was introduced to current rates; some rates have risen during this time.

Review Questions

Name three features of the 8086 that were improvements over the 8080/8085.

What is the major difference between 8088 and 8086 microprocessors?

Give the size of the address bus and physical memory capacity of the following:

(a) 8086 (b) 80286 (c) 80386

4. The 80286isa -bit microprocessor, whereas the 80386 is a -bit
MIiCTOPIOCEsSSOr.

State the major difference between the 80386 and the 80386SX.

List additional features introduced with the 80286 that were not present in the 8086.
List additional features of the 80486 that were not present in the 80386.

bl Sl

N o

20 CHAPTER 1: THE 80x86 MICROPROCESSOR

EXECUTION UNIT (EU) BUS INTERFACE UNIT (BIU)

AH | AL CS
BH | BL ES
CH | cL SS
DH | DL DS
BP IP
Dl F 3
Sl
SP
F 3 F
L J
ol g address
x x multiplexe generation and I
bus bus control
A 4 v 1l
operands
r Y F)
L J
¥ 4 instruction
7 queue
ALU / |
__/
F 3
L 4
flags

Figure 1-1. Internal Block Diagram of the 8088/86 CPU
(Reprinted by permission of Intel Corporation, Copyright Intel Corp. 1989)

SECTION 1.2: INSIDE THE 8088/8086

In this section we explore concepts important to the internal operation of
the 8088/86, such as pipelining and registers. See the block diagram in Figure 1-1.

Pipelining

There are two ways to make the CPU process information faster: increase
the working frequency or change the intemal architecture of the CPU. The first
option is technology dependent, meaning that the designer must use whatever
technology is available at the time, with consideration for cost. The technology and
materials used in making ICs (integrated circuits) determine the working frequency,
power consumption, and the number of transistors packed into a single-chip micro-
processor. A detailed discussion of IC technology is beyond the scope of this book.
It is sufficient for the purpose at hand to say that designers can make the CPU work
faster by increasing the frequency under which it runs if technology and cost allow.
The second option for improving the processing power of the CPU has to do with
the internal working of the CPU. In the 8085 microprocessor, the CPU could either

SECTION 1.2: INSIDE THE 8088/8086

21

fetch or execute at a given time. In other words, the CPU had to fetch an instruction
from memory, then execute it and then fetch again, execute it, and so on. The 1dea
of pipelining in its simplest form is to allow the CPU to fetch and execute at the
same time as shown in Figure 1-2. It is important to point out that Figure 1-2 is not
meant to imply that the amount of time for fetch and execute are equal.

nonpipelined fetch 1 exec 1 fetch 2 exec 2
(e.g., 8085)
pipelined fetch 1 exec 1
(e.g., 8086)
fetch 2 exec 2

fetch 3 exec 3

Figure 1-2. Pipelined vs. Nonpipelined Execution

Intel implemented the concept of pipelining in the 8088/86 by splitting the
internal structure of the microprocessor into two sections: the execution unit (EU)
and the bus interface unit (BIU). These two sections work simultancously. The
BIU accesses memory and peripherals while the EU executes instructions pre-
viously fetched. This works only if the BIU keeps ahead of the EU; thus the BIU
of the 8088/86 has a buffer, or queue (see Figure 1-1). The buffer is 4 bytes long in
the 8088 and 6 bytes in the 8086. If any instruction takes too long to execute, the
queue is filled to its maximum capacity and the buses wili sit idle. The BIU fetches
anew instruction whenever the queue has room for 2 bytes in the 6-byte 8086 queue,
and for 1 byte in the 4-byte 8088 queue. In some circumstances, the microprocessor
must flush out the queue. For example, when a jump instruction is executed, the
BIU starts to fetch information from the new location in memory and information
in the queue that was fetched previously is discarded. In this situation the EU must
wait until the BIU fetches the new instruction. This is referred to in computer
science terminology as a branch penalty. 1n a pipelined CPU, this means that too
much jumping around reduces the efficiency of a program. Pipelining in the
8088/86 has two stages: fetch and execute, but in more powerful computers
pipelining can have many stages. The concept of pipelining combined with an
increased number of data bus pins has, in recent years, led to the design of very
powerful microprocessors.

Registers

In the CPU, registers are used to
store information temporarily. That in- _AX)
formation could be one or two bytes of 16-bit register
data to be processed or the address of data.
The registers of the 8088/86 fall into the AH AL
six categories outlined in Table 1-2. The 8-bit reg. | 8-bitreg.
general-purpose registers in 8088/86 mi-
croprocessors can be accessed as either
16-bit or 8-bit registers. All other registers can be accessed only as the full 16 bits.
In the 8088/86, data types are either 8 or 16 bits. To access 12-bit data, for example,
a 16-bit register must be used with the highest 4 bits set to 0. The bits of a register
are numbered in descending order, as shown below.

22

CHAPTER 1: THE 80x86 MICROPROCESSOR

16-bit register:

L=

SECTION 1.3:

D7 |D6 |D5 D3 |DZ2 [D1 (DO

8-bit register:

Di5|/D14]|D13]D12{D11|D10|D9 |D8 |D7 |D6 |D5 (D4 |D3 |D2 |D1 |DO

Different registers in the 8088/86 are used for different functions, and since
some instructions use only specific registers to perform their tasks, the use of
registers will be described in the context of instructions and their application in a
given program. The first letter of each general register indicates its use. AX is used
for the accumuiator, BX as a base addressing register, CX is used as a counter in
loop operations, and DX is used to point to data in 1/O operations.

Table 1-2: Registers of the 8086/286 by Category

%Categorv Bits __|Register Names

General 16 AX BX,CX,DX

. 8 AH, AL, BH, BL, CH, CL, DH, DL

:__I_’wg_)__int_g:_r_ ., 16 | SP(stack pointer), BP (base pointer) ‘

Index 77ﬁ 16 SI (source index)}, DI (destination index) j.

|Segment 16 CS (code segment), DS (data segment), i
SS (stack segment), ES (extra segment)

Instruction i 16 IP {instruction pointer)

Flag 16 |[FR (flag register) B)

Note:

The general registers can be accessed as the full 16 bits (such as AX), or as
the high byte only (AH) or low byte only (AL).

Review Questions

Explain the functions of the EU and the BIU.

What is pipelining, and how does it make the CPU execute faster?
Registers of the 8086 are either bits or bits in length.
List the 16-bit registers of the 8086.

INTRODUCTION TO ASSEMBLY PROGRAMMING

While the CPU can work only in binary, it can do so at very high speeds.
However, it is quite tedious and slow for humans to deal with Os and s in order to
program the computer. A program that consists of 0s and Is is called machine
language, and in the early days of the computer, programmers actually coded
programs in machine language. Although the hexadecimal system was used as a
more efficient way to represent binary numbers, the process of working in machine
code was still cumbersome for humans. Eventually, Assembly languages were
developed, which provided mnemonics for the machine code instructions, plus other
features that made programming faster and less prone to error. The term mnemonic
is frequently used in computer science and engineering literature to refer to codes
and abbreviations that are relatively easy to remember. Assembly language pro-
grams must be translated into machine code by a program called an assembler.
Assembly language is referred to as a low-level language because it deals directly
with the internal structure of the CPU. To program in Assembly language, the
programmer must know the number of registers and their size, as well as other details
of the CPU.

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING

23

Today, one can use many different programming languages, such as Pascal,
BASIC, C, and numerous others. These languages are called high-level languages
because the programmer does not have to be concerned with the internal details of
the CPU. Whereas an assembler is used to translate an Assembly language program
into machine code (sometimes called object code), high-level languages are trans-
lated into machine code by a program called a compiler. For instance, to write a
program in C, one must use a C compiler to translate the program into machine
language.

There arc numerous assemblers available for translating 80x86 Assembly
language programs into machine code. One of the most commonly used assemblers,
MASM by Microsoft, is introduced in Chapter 2. The present chapter is designed
to correspond to Appendix A: DEBUG programming. The program in this chapter
can be entered and run with the use of the DEBUG program. If you are not familiar
with DEBUG, refer to Appendix A for a tutorial introduction. The DEBUG utility
is provided with the DOS operating system and therefore is widely accessible.

Assembly language programming

An Assembly language program consists of, among other things, a series
of lines of Assembly language instructions. An Assembly language instruction
consists of a mnemonic, optionally followed by one or two operands. The operands
are the data items being manipulated, and the mnemonics are the commands to the
CPU, telling 1t what to do with those items. We introduce Assembly language
programming with two widely used instructions: the move and add instructions.

MOV instruction

Simply stated, the MOV instruction copies data from one location to
another. It has the following format:

MOV destination,source ;copy source operand to destination

This instruction tells the CPU to move (in reality, copy) the source operand
to the destination operand. For example, the nstruction "MOV DX,CX" copies the
contents of register CX to register DX. After this instruction is executed, register
DX will have the same value as register CX. The MOV instruction does not affect
the source operand. The following program first loads CL with value 55H, then
moves this value around to various registers inside the CPU.

MOV CL,55H ;move 55H into register CL

MOV DL,CL ;copy the contents of CL into DL {now DL=CL=55H)
MOV AH,DL ;copy the contents of DL into AH (now AH=DL=55H)
MOV AL AH ;copy the contents of AH into AL (now AL=AH=55H)
MOV BH,CL ;copy the contents of CL into BH {(now BH=CL=55H)
MOV CH,BH ;copy the contents of BH into CH (now CH=BH=55H)

The use of 16-bit registers is demonstrated below.

MOV CX468FH :move 468FH into CX (now CH=46,CL=8F)

MOV AX,CX ;copy contents of CX to AX (now AX=CX=468FH)
MOV DX,AX ;copy contents of AX to DX (now DX=AX=468FH)
MOV BX,DX ;copy contents of DX to BX (now BX=DX=468FH)
MOV Di,BX ;now DI=BX=468FH

MOV SI.DA ;now SI=D=468FH

MOV DS,SI ;now DS=S1=468FH

MOV BPDI ;now BP=DI=468FH

Int the 8086 CPU, data can be moved among all the registers shown in Table
1-2 (except the flag register) as long as the source and destination registers match

24

CHAPTER 1: THE 80x86 MICROPROCESSOR

in size. Code such as "MOV AL,DX" will cause an error, since ong ¢annot move
the contents of a 16-bit register into an 8-bit register. The exception of the flag
register means that there is no such instruction as "MOV FR AX". Loading the flag
register is done through other means, discussed in later chapters.

If data can be moved among all registers including the segment registers,
can data be moved directly into all registers? The answer is no. Data can be moved
directly into nonsegment registers only, using the MOV instruction. For example,
look at the following instructions to see which are legal and which are illegal.

MOV AX,58FCH ;move 58FCH into AX (LEGAL)

MOV DX,6678H :move 6678H into DX (LEGAL)
MOV S51,824BH :move 924B into S| {(LEGAL)
MOV BP,2458H :move 2458H into BP (LEGAL)
MOV DS,2341H ;move 2341H into DS {ILLEGAL)
MOV CX,8876H ;move 8876H into CX (LEGAL)
MOV CS,3F47H ;move 3F47H into CS (ILLEGAL)
MOV BH,98H ;move 99H into BH {LEGAL)

From the discussion above, note the following three points:

1. Values cannot be loaded directly into any segment register (CS, DS, ES, or S8). To
load a value into a segment register, first load it to a nonsegment register and then
move it to the segment register, as shown next.

MOV AX,2345H :load 2345H into AX

MOV DS AX :then load the value of AX into DS

MOV DI, 1400H :load 1400H into D!

MOV ES,DI :then move it into ES, now ES=DI=1400

2. If a value less than FFH is moved into a 16-bit register, the rest of the bits are
assumed to be all zeros. For example, in "MOV BX,5" the result will be BX = 0005,
that is, BH = 00 and BL = 05.

3. Moving a value that is too large into a register will cause an error.

MOV BL,7F2H ILLEGAL: 7F2H is larger than 8 bits
MOV AX,2FE456H ILLEGAL: the value is larger than AX

ADD instruction
The ADD instruction has the following format:
ADD destination,source ;ADD the source operand to the destination
The ADD instruction tells the CPU to add the source and the destination

operands and put the result in the destination. To add two numbers such as 25H and
34H, each can be moved to a register and then added together:

MOV AL,25H ;move 25 into AL
MOV BL,34H :move 34 into BL
ADD ALBL :AL=AL + BL

Executing the program above results in AL = 59H (25H + 34H = 59H) and
BL = 34H. Notice that the contents of BL. do not change. The program above can
be written in many ways, depending on the registers used. Another way might be:

SECTION 1.3: INTRODUCTION TO ASSEMBLY PROGRAMMING 25

MOV DH,25H :move 25 into DH
MOV CL,34H ;move 34 into CL
ADD DH,CL ;add CLto DH: DH =DH + CL

The program above results in DH = 59H and CL = 34H. There are always
many ways to write the same program. One question that might come to mind after
looking at the program above is whether it is necessary to move both data items into
registers before adding them together. The answer is no, it is not necessary. Look
at the following variation of the same program:

MOV DH,25H :load one operand into DH
ADD DH,34H ;:add the second operand to DH

In the case above, while one register contained one value, the second value
followed the instruction as an operand. This is called an immediate operand. The
examples shown so far for the ADD and MOV instructions show that the source
operand can be either a register or immediate data. Tn the examples above, the
destination operand has always been a register. The format for Assembly language
instructions, descriptions of their use, and a listing of legal operand types are
provided in Appendix B.

The largest number that an 8-bit register can hold is FFH. To use numbers
larger than FFH (255 decimal), 16-bit registers such as AX, BX, CX, or DX must
be used. For example, to add two numbers such as 34EH and 6A5H, the following
program can be used:

MOV AX,34EH :move 34EH into AX
MOV DX,8A5H :move 6A5H into DX

ADD DXAX ;add AX to DX: DX = DX + AX

Running the program above gives DX = 9F3H (34E + 6A5 = 9F3) and AX
=34E. Again, any 16-bit nonsegment registers could have been used to perform the
action above:

MOV CX34EH ;load 34EH into CX
ADD CX,6A5H ;add 6A5H to CX (now CX=9F3H)

The general-purpose registers are typically used in arithmetic operations.
Register AX is sometimes referred to as the accumulator.

Review Questions

—_—

Write the Assembly language instruction to move value 1234H into register BX.

2. Write the Assembly language instructions to add the values 16H and ABH. Place
the result in register AX.

3. No value can be moved directly into which registers?

4. What is the largest hex value that can be moved into a 16-bit register? Into an 8-bit

register? What are the decimal equivalents of these hex values?

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS

A typical Assembly language program consists of at least three segments:
a code segment, a data segment, and a stack segment. The code segment contains
the Assembly language instructions that perform the tasks that the program was
designed to accomplish. The data segment is used to store information (data) that
needs to to be processed by the instructions in the code segment. The stack is used
to store information temporarily. In this section we describe the code and data
segments of a program in the context of some examples and discuss the way data is
stored in memory. The stack segment is covered in Section 1.5.

26 CHAPTER 1: THE 80x86 MICROPROCESSOR

Origin and definition of the segment

A segment is an area of memory that includes up to 64K bytes and begins
on an address evenly divisible by 16 (such an address ends in 0H). The segment
size of 64K bytes came about because the 8085 microprocessor could address a
maximum of 64K bytes of physical memory since it had only 16 pins for the address
lines (216 =64K). This limitation was carried into the design of the 8088/86 to ensure
compatibility. Whereas in the 8085 there was only 64K bytes of memory for all
code, data, and stack information, in the 8088/86 there can be up to 64K bytes of
memory assigned to each category. Within an Assembly language program, these
categories are called the code segment, data segment, and stack segment. For this
reason, the 8088/86 can only handle a maximum of 64K bytes of code and 64K bytes
of data and 64K bytes of stack at any given time, although it has a range of 1
megabyte of memory because of its 20 address pins (220 = 1 megabyte). How to
move this window of 64K bytes to cover all 1 megabyte of memory is discussed
below, after we discuss logical address and physical address.

Logical address and physical address

In Intel literature concerning the 8086, there are three types of addresses
mentioned frequently: the physical address, the offset address, and the logical
address. The physical address is the 20-bit address that is actually put on the address
pins of the 8086 microprocessor and decoded by the memory interfacing circuitry.
This address can have a range of 00000H to FFFFFH for the 8086 and real-mode
286, 386, and 486 CPUs. This is an actual physical location in RAM or ROM within
the 1 megabyte memory range. The offset address is a location within a 64K-byte
segmentrange. Therefore, an offset address can range from 0000H to FFFFH. The
logical address consists of a segment value and an offset address. The differences
among these addresses and the process of converting from one to another is best
understood in the context of some examples, as shown next.

Code segment

To execute a program, the 8086 cs P

fetches the instructions (opcodes and op- 2ls510l0):19l51F|3

erands) from the code segment. The logi-
cal address of an instruction always
consists of a CS (code segment) and an IP (instruction pointer), shown in CS:IP
format. The physical address for the location of the instruction is generated by
shifting the CS left one hex digit and then adding it to the IP. [P contains the offset
address. The resulting 20-bit address is called the physical address since it is put
on the external physical address bus pins to be decoded by the memory decoding
circuitry. To clarify this important concept, assume values in CS and [P as shown
in the diagram. The offset address is contained in IP; in this case it is 95F3H. The
logical address is CS:IP, or 2500:95F3H. The physical address will be 25000 + 95F3
= 2ESF3H. The physical address of an instruction can be calculated as follows:

1, Start with CS. 2(5]0/(0
2. Shift left CS. 2510100
3.Add IP. STelsTF T3

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS

27

The microprocessor will retrieve the instruction from memory locations
starting at 2ESF3. Since IP can have a minimum value of 0000H and a maximum
of FFFFH, the logical address range in this example is 2500:0000 to 2500:FFFF.
This means that the lowest memory location of the code segment above will be
25000H (25000 + 0000) and the highest memory location will be 34FFFH (25000
+ FFFF). What happens if the desired instructions are located beyond these two
limits? The answer is that the value of CS must be changed to access those
instructions. See Example 1-1.

Example 1-1

If CS = 24F6H and IP = 634AH, show:
(a) The logical address

{(b) The offset address

and calculate:

(c) The physical address

{d) The lower range

(e) The upper range of the code segment

Solution:

{a) 24F6:634A (b) 634A

{c) 2B2AA (24F60 + 634A) (d) 24F60 (24F60 + 0000)
(e) 34F5F (24F60 + FFFF)

Logical address vs. physical address in the code segment

In the code segment, CS and IP hold the logical address of the instructions
to be executed. The following Assembly language instructions have been assembled
(translated into machine code) and stored in memory. The three columns show the
logical address of CS:IP, the machine code stored at that address and the correspond-
ing Assembly language code. This information can easily be generated by the
DEBUG program using the Unassemble command.

Logical address Machine language Assembly language
CSIP opcode and operand mnemonics and operand
1132:0100 BO57 MOV AL,57
1132:0102 B686 MOV DH,86
1132:0104 B272 MOV DL, 72
1132:0106 89D1 MOV CX,DX
1132:0108 88C7 MOV BH,AL
1132:010A B39F MOV BL.9F
1132:010C B420 MOV AH,20
1132:010E 01D0 ADD AX.,DX
1132:0110 01D% ADD CX,BX
1132:0112 05351F ADD AX,1F35

The program above shows that the byte at address 1132:0100 contains B0,
which is the opcode for moving a value into register AL, and address 1132:0101
contains the operand (in this case 57) to be moved to AL. Therefore, the instruction
"MOV AL,57" has a machine code of BO57, where B0 is the opcode and 57 is the
operand. Similarly, the machine code B686 is located in memory locations
1132:0102 and 1132:0103 and represents the opcode and the operand for the
instruction "MOV DH,86". The physical address is an actual location within RAM
(or even ROM). The following are the physical addresses and the contents of each
location for the program above. Remember that it is the physical address that 1s put
on the address bus by the 8086 CPU to be decoded by the memory circuitry:

28

CHAPTER 1: THE 80x86 MICROPROCESSOR

Logical address Physical address Machine code contents

1132:0100 11420 BO
1132:0101 11421 57
1132:0102 11422 B6
1132:0103 11423 86
1132:0104 11424 B2
1132:0105 11425 72
1132:0106 11426 89
1132:0107 11427 D1
1132:0108 11428 88
1132:0109 11429 c7
1132:010A 1142A B3
1132:010B 1142B 9F
1132:010C 1142C B4
1132:010D 1142D 20
1132:010E 1142E o1
1132:010F 1142F DO
1132:0110 11430 01
1132:0111 11431 D9
1132:0112 11432 05
1132:0113 11433 35
1132:0114 11434 1F

Data segment

Assume that a program is being written to add 5 bytes of data, such as 25H,
12H, 15H, 1FH, and 2BH, where each byte represents a person’s daily overtime pay.
One way to add them is as follows:

MOV AL,00H ;initialize AL

ADD AL,25H ;add 25H to AL
ADD AL,12H ;add 12H to AL
ADD AL,16H ;add 15H to AL
ADD AL,IFH ;add 1FH to AL
ADD AL,2BH ;add 2BH to AL

In the program above, the data and code are mixed together in the instruc-
tions. The problem with writing the program this way is that if the data changes,
the code must be searched for every place the data is included, and the data retyped.
For this reason, the idea arose to set aside an area of memory strictly for data. In
80x86 microprocessors, the area of memory set aside for data is called the data
segment, Just as the code segment is associated with CS and IP as its segment
register and offset, the data segment uses register DS and an offset value.

The following demonstrates how data can be stored in the data segment and
the program rewritten so that it can be used for any set of data. Assume that the
offset for the data segment begins at 200H. The data is placed in memory locations:

DS:0200 = 25

DS:0201 =12

DS5:0202 =15

DS:0203 = 1F

DS:0204 = 2B

and the program can be rewritten as follows:

MOV ALD ;clear AL

ADD AL,[0200] ;add the contents of DS:200 to AL
ADD AL,[0201] :add the contents of DS:201 to AL
ADD AL,[0202] :add the contents of DS:202 to AL
ADD AL,[0203] ;add the contents of DS:203 to AL
ADD AL,[0204] ;add the contents of DS:204 to AL

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS

29

Notice that the offset address is enclosed in brackets. The brackets indicate
that the operand represents the address of the data and not the data itself. If the
brackets were not included, as in "MOV AL,0200", the CPU would attempt to move
200 into AL instead of the contents of offset address 200. Keep in mind that there
is one important difference in the format of code for MASM and DEBUG in that
DEBUG assumes that all numbers are in hex (no "H" suffix is required), whereas
MASM assumes that they are in decimal and the "H" must be included for hex data.

This program will run with any set of data. Changing the data has no effect
on the code. Although this program is an improvement over the preceding one, it
can be improved even further. Ifthe data had to be stored at a different offset address,
say 450H, the program would have to be rewritten. One way to solve this problem
would be to use a register to hold the offset address, and before each ADD, to
increment the register to access the next byte. Next a decision must be made as to
which register to use. The 8086/88 allows only the use of registers BX, SI, and DI
as offset registers for the data segment. In other words, while CS uses only the IP
register as an offset, DS uses only BX, D], and SI to hold the offset address of the
data. The term pointer is often used for a register holding an offset address. In the
following example, BX is used as a pointer:

MOV AL,0 -initialize AL

MOV BX,0200H ;BX points to the offset addr of first byte
ADD AL,[BX] ;add the first byte to AL

INC BX ;increment BX to point to the next byte
ADD AL,[BX] ;add the next byte to AL

INC BX ;increment the pointer

ADD AL,BX] ;add the next byte to AL

INC BX sincrement the pointer

ADD AL,[BX] ;add the last byte to AL

The "INC" instruction adds 1 to (increments) its operand. "INC BX"
achieves the same result as "ADD BX,1". For the program above, if the offset
address where data is located is changed, only one instruction will need to be
modified and the rest of the program will be unaffected. Examining the program
above shows that there is a pattern of two instructions being repeated. This leads
to the idea of using a loop to repeat certain instructions. Implementing a loop
requires familiarity with the flag register, discussed later in this chapter.

Logical address and physical address in the data segment

The physical address for data is calculated using the same rules as for the
code segment, That is, the physical address of data is calculated by shifting DS left
one hex digit and adding the offset value, as shown in Examples 1-2, 1-3, and 1-4.

Example 1-2
Assume that DS is 5000 and the offset is 1950. Calculate the physical address of the byte.
Solution: DS : offset

51000 : 19|50

The physical address will be 50000 + 1950 = 51950.

1. Start with DS. 50|00
2. Shift DS left. 51010(0]0
3. Add the offset. 51191510

CHAPTER 1: THE 80x86 MICROPROCESSOR

Example 1-3

If DS = 7FA2H and the offset 1s 438EH,
(a) Calculate the physical address. (b} Calculate the lower range.
(c) Calculate the upper range of the data segment. (d) Show the logical address.

Solution:

(a) 83DAE (7FA20 + 438E) (by 7TFA20 (7FA20 + 0000)
(c) 8FA1F (7FA20 + FFFF) (d) 7TFA2:438E

Example 1-4

Assume that the DS register is 578C. To access a given byte of data at physical memory location
67F66, does the data segment cover the range where the data is located? If not, what changes need to
be made?

Solution:
No, since the range is 578C0 to 678BF, location 67F66 is not included in this range. To access that
byte, DS must be changed so that its range will include that byte.

Little endian convention

Previous examples used 8-bit or 1-byte data. In this case the bytes are stored
one after another in memory. What happens when 16-bit data is used? For example:

MOV AX,35F3H :load 35F3H into AX
MOV [1500],AX ;copy the contents of AX to offset 1500H

In cases like this, the low byte goes to the low memory location and the
high byte goes to the high memory address. In the example above, memory location
DS:1500 contains F3H and memory location DS:1501 contains 35H.

DS:1500 = F3 DS5:1501 = 35

This convention is called little endian versus big endian. The origin of the
terms big endian and little endian is from a Gulliver 5 Travels story about how an
egg should be opened: from the little end or the big end. In the big endian method,
the high byte goes to the low address, whereas in the little endian method, the high
byte goes to the high address and the low byte to the low address. See Example 1-5.
All Intel microprocessors and many minicomputers, notably the Digital VAX, use
the little endian convention. Motorola microprocessors (used in the Macintosh),

Example 1-5

Assume memory locations with the following contents: DS:6826 = 48 and DS:6827 = 22.
Show the contents of register BX in the instruction "MOV BX,[6826]".

Solution:

According to the little endian convention used in all 80x86 microprocessors, register BL should
contain the value from the low offset address 6826 and register BH the value from offset address
6827, giving BL. = 48H and BH = 22H.

BH BL
DS:6826 = 48
DS:6827 = 22 22 |48

SECTION 1.4: INTRODUCTION TO PROGRAM SEGMENTS 31

along with some mainframes, use big endian. This difference might seem as trivial
as whether to break an egg from the big end or little end, but it is a nuisance in
converting software from one camp to be run on a computer of the other camp.

Extra segment (ES)

ES is a segment register used as an extra data segment. Although in many
normal programs this segment is not used, its use is absolutely essential for string
operations and is discussed in detail in Chapter 6.

Memory map of the IBM PC

For a program to be executed R
on the PC, DOS must first load it into 00000H
RAM. Where in RAM will it be
loaded? To answer that question, we
must first explain some very impor- RAM
tant concepls cONCErnIng memory in 640K
the PC. The 20-bit address of the
8088/86 allows a total of 1 megabyte
(1024K bytes) of memory space with

the address range 00000 - FFFFF. - 9FFFFH
During the design phase of the first AQODOH
IBM PC, engineers had to decide on Video Display

the allocation of the 1-megabyte RAM 128K

memory space to various sections of

the PC. This memory allocation is R —A—BE!:{')%EE"”
called a memory map. The memory ROM coo

map of the IBM PC is shown in Figure 256K

1-3. Of this 1 megabyte, 640K bytes FFFFFH

from addresses 00000 - 9FFFFH were
set aside for RAM. The 128K bytes

from AOOOOH to BFFFFH were allo-
cated for video memory. The remain-
ing 256K bytes from COO000H to
FFFFFH were set aside for ROM,

More about RAM

In the early 1980s, most PCs came with only 64K to 256K bytes of RAM
memory, which was considered more than adequate at the time. Users had to buy
memory expansion boards to expand memory up to 640K if they needed additional
memory. The need for expansion depends on the DOS version being used and the
memory needs of the application software being run. The DOS operating system
first allocates the available RAM on the PC for its own use and then lets the rest be
used for applications such as word processors. The complicated task of managing
RAM memory is left to DOS since the amount of memory used by DOS varies
among its various versions and since different computers have different amounts
of RAM, plus the fact that the memory needs of application packages vary. For this
reason we do not assign any values for the CS, DS, and SS registers since such an
assignment means specifying an exact physical address in the range 00000 -
9FFFFH, and this is beyond the knowledge of the user. Another reason is that
assigning a physical address might work on a given PC but it might not work on a
PC with a different DOS version and RAM size. In other words, the program would
not be portable to another PC. Therefore, memory management is one of the most
important functions of the DOS operating system and should be left to DOS. This
18 very important to remember because in many examples in this book we have
values for the segment registers CS, DS, and SS that will be different from the
values that readers will get on their PCs. Therefore, do not try to assign the value
to the segment registers to comply with the values in this book.

Figure 1-3. Memory Allocation in the PC

32

CHAPTER 1: THE 80x86 MICROPROCESSOR

b —

A

SECTION 1.5:

Video RAM

From AOOOOH to BFFFFH is set aside for video. The amount used and the
location varies depending on the video board installed on the PC. Table E-2 of
Appendix E lists the starting addresses for video boards.

More about RCM

From CO000H to FFFFFH is set aside for ROM. Not all the memory space
in this range is used by the PC’s ROM. Ofthis 256K bytes, only the 64K bytes from
location FOOOOH - FFFFFH are used by BIOS (basic input/output system) ROM.
Some of the remaining space is used by various adapter cards (such as cards for hard
disks), and the rest is free. In recent years, newer versions of DOS have gained
some very powerful memory management capabilities and can put to good use all
the unused memory space beyond 640. The 640K-byte memory space from 00000
to 9FFFFH is referred to as conventional memory, while the 384K bytes from
ADO000H to FFFFFH are called the UMB (upper memory block) in DOS 35 literature.
A complete discussion of the various memory terminology and configurations such
as expanded and extended memory appears in Chapter 25.

Function of BIOS ROM

Since the CPU can only execute programs that are stored in memory, there
must be some permanent (nonvolatile) memory to hold the programs tetling the CPU
what to do when the power is turned on. This collection of programs held by ROM
isreferred to as BIOS in the PC literature. BIOS, which stands for basic input-output
system, contains programs to test RAM and other components connected to the CPU.
It also contains programs that allow DOS to communicate with peripheral devices
such as the keyboard, video, printer, and disk. It is the function of BIOS to test all
the devices connected to the PC when the computer is turned on and to report any
errors. For example, if the keyboard is disconnected from the PC before the
computer is turned on, BIOS will report an error on the screen, indicating that
condition. It is only after testing and setting up the peripherals that BIOS will load
DOS from disk into RAM and hand over control of the PC to DOS. Although there
are occasions when either DOS or applications programs need to use programs in
BIOS ROM (as will be seen in Chapter 4), DOS always controls the PC once it is
loaded.

Review Questions

A segment is an area of memory that includes up to bytes.

How large is a segment in the 80867 Can the physical address 346E0 be the starting

address for a segment? Why or why not?

State the difference between the physical and logical addresses.

A physical address isa __ -bit address; an offset addressisa _ -bit address.
Which register is used as the offset register with segment register CS?

If BX = 1234H and the instruction "MOV [2400],BX" were executed, what would
be the contents of memory locations at otfsets 2400 and 24017

MORE ABOUT SEGMENTS IN THE 80x86

In this section we examine the concept of the stack, its use in 80x86
microprocessors, and its implementation in the stack segment. Then more advanced
concepts relating to segments are discussed, such as overlapping segments.

What is a stack, and why is it needed?

The stack is a section of read/write memory (RAM) used by the CPU to
store information temporarily. The CPU needs this storage area since there are only

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86

33

a limited number of registers. There must be some place for the CPU to store
information safely and temporarily. Now one might ask why not design a CPU with
more registers? The reason is that in the design of the CPU, every transistor is
precious and not enough of them are available to build hundreds of registers. In
addition, how many registers should a CPU have to satisfy every possible program
and application? All applications and programming techniques are not the same.
In a similar manner, it would be too costly in terms of real estate and construction
costs to build a 50-room house to hold everything one might possibly buy throughout
his or her lifetime. Instead, one builds or rents a shed for storage.

Having looked at the advantages of having a stack, what are the disadvan-
tages? The main disadvantage of the stack is its access time. Since the stack is in
RAM, it takes much longer to access compared to the access time of registers. After
all, the registers are inside the CPU and RAM is outside. This is the reason that
some very powerful (and consequently, expensive) computers do not have a stack;
the CPU has a large number of registers to work with.

How stacks are accessed

1f the stack is a section of RAM, there must be registers inside the CPU to
point to it. The two main registers used to access the stack are the SS (stack segment)
register and the SP (stack pointer) register. These registers must be loaded before
any instructions accessing the stack are used. Every register inside the 80x86
(except segment registers and SP) can be stored in the stack and brought back into
the CPU from the stack memory. The storing of a CPU register in the stack is called
a push, and loading the contents of the stack into the CPU register is called a pop.
In other words, a register is pushed onto the stack to store it and popped off the stack
to retrieve it. The job of the SP is very critical when push and pop are performed.
In the 80x86, the stack pointer register (SP) points at the current memory location
used for the top of the stack and as data is pushed onto the stack it is decremented.
It is incremented as data is popped off the stack into the CPU. When an instruction
pushes or pops a general-purpose register, it must be the entire 16-bit register. In
other words, one must code "PUSH AX"; there are no instructions such as "PUSH
AL"or "PUSH AH". The reason that the SPis decremented after the push is to make
sure that the stack is growing downward from upper addresses to lower addresses.
This is the opposite of the IP (instruction pointer). As was seen in the preceding
section, the IP points to the next instruction to be executed and is incremented as
each instruction is executed. To ensure that the code section and stack section of
the program never write over each other, they are located at opposite ends of the
RAM memory set aside for the program and they grow toward each other but must
not meet, If they meet, the program will crash. To see how the stack grows, look
at the following examples.

Pushing onto the stack

Notice in Example 1-6 that as each PUSH is executed, the contents of the
register are saved on the stack and SP is decremented by 2. For every byte of data
saved on the stack, SP is decremented once, and since push is saving the contents
of a 16-bit register, it is decremented twice. Notice also how the data is stored on
the stack. In the 80x86, the lower byte is always stored in the memory location with
the lower address. That is the reason that 24H, the contents of AH, is saved in
memory location with address 1235 and AL in location 1234.

Popping the stack

Popping the contents of the stack back into the 80x86 CPU is the opposite
process of pushing. With every pop, the top 2 bytes of the stack are copied to the
register specified by the instruction and the stack pointer is incremented twice.
Although the data actually remains in memory, it is not accessible since the stack
pointer is beyond that point, Example 1-7 demonstrates the POP instruction.

34

CHAPTER 1: THE 80x86 MICROPROCESSOR

Example 1-6

Assuming that SP = 1236, AX = 24B6, DI = 85C2, and DX = 5F93, show the contents of the stack as
each of the following instructions is executed:

PUSH AX
PUSH DI
PUSH DX
Solution:
§8:1230 - 93
$5:1231 5F
58:1232 - C2 c2
$8:1233 85 85
58:1234 —» BB B& B6&
585:1235 24 24 24
55:1236 =—»
START After After After
PUSH AX PUSH DI PUSH DX
SP=1236 SP = 1234 SP =1232 SP = 1230
Example 1-7

Solution:
SS:18FA

$S:18FB
$S8:18FC
SS18FD
SS18FE
SS:18FF
$5:1900

Assuming that the stack is as shown below, and SP = 18FA, show the contents of the stack and regis-
ters as each of the following instructions is executed:

POP CX
POP DX
POP BX
— 23
14
6B —» 6B
2C 2C
91 91 —»l 91
Fo F6 F6
—
START After After After
POP CX POP DX POP BX
SP = 18FA SP = 18FC SP = 18FE SP = 1800
CX =1423 DX = 2C6B BX = F691

Logical address vs. physical address for the stack

Now one might ask, what is the exact physical location of the stack? That
depends on the value of the stack segment (8S) register and SP, the stack pointer.
To compute physical addresses for the stack, the same principle is applied as was
used for the code and data segments. The method is to shift left SS and then add
offset SP, the stack pointer register. This is demonstrated in Example 1-8.

What values are assigned to the SP and S8, and who assigns them? It1s the
job of the DOS operating system to assign the values for the SP and S8 since memory
management is the responsibility of the operating system. Before leaving the
discussion of the stack, two points must be made. First, in the 80x86 literature, the
top of the stack is the last stack location occupied. This is different from other CPUs.

SECTION 1.5: MORE ABOUT SEGMENTS IN THE 80x86

35

Second, BP is another register that can be used as an offset into the stack, but it has
very special applications and is widely used to access parameters passed between
Assembly language programs and high-level language programs such as C. This is
discussed in Chapter 7.

Example 1-8

If SS = 3500H and the SP is FFFEH,
(a) Calculate the physical address of the stack, (b} Calculate the lower range.
(¢) Calculate the upper range of the stack segment. (d) Show the logical address of the stack.

Solution:

(a) 44FFE (35000 + FFFE) (b) 35000 (35000 + 0000)
(c) 44FFF (35000 + FFFF) (d) 3500:FFFE

A few more words about segments in the 80x86

Can a single physical address belong to many different logical addresses?
Yes, look at the case of a physical address value of 15020H. There are many possible
logical addresses that represent this single physical address:

Logical address (hex) Physical address (hex)
1000:5020 15020
1500:0020 15020
1502:0000 15020
1400:1020 15020
1302:2000 15020

This shows the dynamic behavior of the segment and offset concept in the
8086 CPU. One last point that must be clarified is the case when adding the offset
to the shifted segment register results in an address beyond the maximum allowed
range of FFFFFH. In that situation, wrap-around will occur. This is shown in
Example 1-9.

Example 1-9

What is the range of physical addresses if CS = FF59?

Solutien:

The low range is FF590 (FF590 + 0000). The range goes to FFFFF and wraps around, from 00000 to
OF58F (FF590 + FFFF = 0F58F), which is iliustrated below.

00000

OF58F

FF530

.| FFFFF

Ove